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THE FOUNDATION OF ELECTRO-
DYNAMICS, INSCRIBED BY AMPÈRE

AMPÈRE, Andre-Marie. Mémoires sur l’action mutuelle de deux courans électri-
ques, sur celle qui existe entre un courant électrique et un aimant ou le globe terres-
tre, et celle de deux aimans l’un sur l’autre. [Paris: Feugeray, 1821].

$22,500

8vo (219 x 133mm), pp. [3], 4-112 with five folding engraved plates (a few faint 
scattered spots). Original pink wrappers, uncut (lacking backstrip, one cord partly 
broken with a few leaves just holding, slightly darkened, chip to corner of upper cov-
er); modern cloth box. An untouched copy in its original state.

First edition, probable first issue, extremely rare and inscribed by Ampère, of this 
continually evolving collection of important memoirs on electrodynamics by 
Ampère and others. “Ampère had originally intended the collection to contain all 
the articles published on his theory of electrodynamics since 1820, but as he pre-
pared copy new articles on the subject continued to appear, so that the fascicles, 
which apparently began publication in 1821, were in a constant state of revision, 
with at least five versions of the collection appearing between 1821 and 1823 un-
der different titles” (Norman). The collection begins with ‘Mémoires sur l’action 
mutuelle de deux courans électriques’, Ampère’s “first great memoir on electrody-
namics” (DSB), representing his first response to the demonstration on 21 April 
1820 by the Danish physicist Hans Christian Oersted (1777-1851) that electric 
currents create magnetic fields; this had been reported by François Arago (1786-
1853) to an astonished Académie des Sciences on 4 September. In this article he 

AMPÈRE, André-Marie.AMPÈRE, André-Marie.



“demonstrated for the first time that two parallel conductors, carrying currents 
traveling in the same direction, attract each other; conversely, if the currents are 
traveling in opposite directions, they repel each other” (Sparrow, Milestones, p. 
33). This first paper is mostly phenomenological, but it is followed here by the im-
portant and much more mathematical sequel, ‘Additions au mémoire précédent – 
note sur les expériences électro-magnétiques de MM. Oersted, Ampère, Arago et 
Biot,’ in which Ampère gave the first quantitative expression for the force between 
current carrying conductors. Ampère attempted to explain his observations by 
postulating a new theory of magnetism – according to him, magnetic forces were 
the result of the motion of two electric fluids; permanent magnets contained 
these currents running in circles concentric to the axis of the magnet and in a 
plane perpendicular to this axis. By implication, the earth also contained cur-
rents which gave rise to its magnetism. Ampère’s theory was attacked by the great 
Swedish chemist Jöns Jacob Berzelius in a letter to his French colleague Claude 
Louis Berthollet, to which Ampère replied in a letter to François Arago. These 
are the third and fourth items in this collection; the fifth and final part is the text 
of a lecture to the Académie on 2 April 1821 in which Ampère again stressed the 
identity of electricity and magnetism. The bibliographical complexity of this work 
is a direct result of Ampère’s modus operandi: “His work was marked by flashes 
of insight, and it often happened that he would publish a paper in a journal one 
week, only to find the next week that he had thought of several new ideas that he 
felt ought to be incorporated into the paper. Since he could not change the orig-
inal, he would add the revisions to the separately published reprints of the paper 
and even modify the revised versions later if he felt it necessary” (Norman). Only 
three other copies of this work listed by ABPC/RBH (all later issues). OCLC lists 
only one copy of this issue of the collection (University College, London), and we 
found no record of any earlier issue.

Provenance: Société Philotechnique d’Ostende (inscribed in the hand of Ampère).

The collection opens with the ‘Premier Mémoire’ [1] (numbering as in the list of 
contents, below), first published in Arago’s Annales de Chimie et de Physique at 
the end of 1820 (Series 2, Tome 15, pp. 59-76 in the October issue & 170-218 in 
November, read 18 & 25 September). “There is some confusion over the precise 
nature of Ampère’s first discovery. In the published memoir, “Mémoire sur 1’ac-
tion mutuelle de deux courants électriques,” he leaped immediately from the ex-
istence of electromagnetism to the idea that currents traveling in circles through 
helices would act like magnets. This may have been suggested to him by con-
sideration of terrestrial magnetism, in which circular currents seemed obvious. 
Ampère immediately applied his theory to the magnetism of the earth, and the 
genesis of electrodynamics may, indeed, have been as Ampère stated it. On the 
other hand, there is an account of the meetings of the Académie des Sciences at 
which Ampère spoke of his discoveries and presented a somewhat different order 
of discovery. It would appear that Oersted’s discovery suggested to Ampere that 
two current-carrying wires might affect one another. It was this discovery that 
he announced to the Académie on 25 September. Since the pattern of magnetic 
force around a current-carrying wire was circular, it was no great step for Ampère 
the geometer to visualize the resultant force if the wire were coiled into a helix. 
The mutual attraction and repulsion of two helices was also announced to the 
Académie on 25 September. What Ampère had done was to present a new theory 
of magnetism as electricity in motion …

“Ampère’s first great memoir on electrodynamics was almost completely phenom-
enological, in his sense of the term. In a series of classical and simple experiments, 
he provided the factual evidence for his contention that magnetism was electrici-
ty in motion. He concluded his memoir with nine points that bear repetition here, 
since they sum up his early work.

1. Two electric currents attract one another when they move parallel to one an-
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other in the same direction; they repel one another when they move parallel but 
in opposite directions. 

2. It follows that when the metallic wires through which they pass can turn only 
in parallel planes, each of the two currents tends to swing the other into a position 
parallel to it and pointing in the same direction. 

3. These attractions and repulsions are absolutely different from the attractions 
and repulsions of ordinary [static] electricity.  

4. All the phenomena presented by the mutual action of an electric current and 
a magnet discovered by M. Oersted ... are covered by the law of attraction and of 
repulsion of two electric currents that has just been enunciated, if one admits that 
a magnet is only a collection of electric currents produced by the action of the 
particles of steel upon one another analogous to that of the elements of a voltaic 
pile, and which exist in planes perpendicular to the line which joins the two poles 
of the magnet. 

5. When a magnet is in the position that it tends to take by the action of the 
terrestrial globe, these currents move in a sense opposite to the apparent mo-
tion of the sun; when one places the magnet in the opposite position so that the 
poles directed toward the poles of the earth are the same [S to S and N to N, not 
south-seeking to S, etc.] the same currents are found in the same direction as the 
apparent motion of the sun. 

6. The known observed effects of the action of two magnets on one another obey 
the same law.  

7. The same is true of the force that the terrestrial globe exerts on a magnet, if one 
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admits electric currents in planes perpendicular to the direction of the declina-
tion needle, moving from east to west, above this direction. 

8. There is nothing more in one pole of a magnet than in the other; the sole dif-
ference between them is that one is to the left and the other is to the right of the 
electric currents which give the magnetic properties to the steel. 

9. Although Volta has proven that the two electricities, positive and negative, of 
the two ends of the pile attract and repel one another according to the same laws 
as the two electricities produced by means known before him, he has not by that 
demonstrated completely the identity of the fluids made manifest by the pile and 
by friction; this identity was proven, as much as a physical truth can be proven, 
when he showed that two bodies, one electrified by the contact of [two] metals, 
and the other by friction, acted upon each other in all circumstances as though 
both had been electrified by the pile or by the common electric machine [elec-
trostatic generator]. The same kind of proof is applicable here to the identity of 
attractions and repulsions of electric currents and magnets. 

“Here Ampère only hinted at the noumenal background. Like most Continental 
physicists, he felt that electrical phenomena could be explained only by two fluids 
and, as he pointed out in the paper, a current therefore had to consist of the posi-
tive fluid going in one direction and the negative fluid going in the other through 
the wire. His experiments had proved to him that this contrary motion of the two 
electrical fluids led to unique forces of attraction and repulsion in current-carry-
ing wires, and his first paper was intended to describe these forces in qualitative 
terms. There was one problem: how could this explanation be extended to per-
manent magnets? The answer appeared deceptively simple: if magnetism were 
only electricity in motion, then there must be currents of electricity in ordinary 
bar magnets.

“Once again Ampère’s extraordinary willingness to frame ad hoc hypotheses is 
evident. Volta had suggested that the contact of two dissimilar metals would give 
rise to a current if the metals were connected by a fluid conductor. Ampère sim-
ply assumed that the contact of the molecules of iron in a bar magnet would 
give rise to a similar current. A magnet could, therefore, be viewed as a series of 
voltaic piles in which electrical currents moved concentrically around the axis of 
the magnet. Almost immediately, Ampère’s friend Augustin Fresnel, the creator 
of the wave theory of light, pointed out that this hypothesis simply would not 
do. Iron was not a very good conductor of the electrical fluids and there should, 
therefore, be some heat generated if Ampère’s views were correct. Magnets are not 
noticeably hotter than their surroundings and Ampère, when faced with this fact, 
had to abandon his noumenal explanation.

“It was Fresnel who provided Ampère with a way out. Fresnel wrote in a note to 
Ampère that since nothing was known about the physics of molecules, why not 
assume currents of electricity around each molecule. Then, if these molecules 
could be aligned, the resultant of the molecular currents would be precisely the 
concentric currents required. Ampere immediately adopted his friend’s sugges-
tion, and the electrodynamic molecule was born. It is, however, a peculiar mol-
ecule. In some mysterious fashion, a molecule of iron decomposed the luminif-
erous ether that pervaded both space and matter into the two electrical fluids, its 
constituent elements. This decomposition took place within the molecule; the two 
electrical fluids poured out the top, flowed around the molecule, and reentered at 
the bottom. The net effect was that of a single fluid circling the molecule. These 
molecules, when aligned by the action of another magnet, formed a permanent 
magnet. Ampere did not say why molecules should act in this way; for him it was 
enough that his electrodynamic model provided a noumenal foundation for elec-
trodynamic phenomena” (DSB).
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The first quantitative expression for the force between current carrying conduc-
tors appeared in Ampère’s less well-known ‘Note sur les expériences électro-mag-
nétiques’ [2], which originally appeared in the Annales des Mines(Series 1, Tome 
5, pp. 535-553). Ampère stated, without proof, that, if two infinitely small por-
tions of electric current A and B, with intensities g and h, separated by a distance 
r, set at angles α and β to AB and in directions which created with AB two planes 
at an angle γ with each other, the force they exert on each other is

gh (sin α sin β sin γ + k cos α cos β)/r2,

where k is an unknown constant which he stated could ‘conveniently’ be taken to 
be zero. This last assumption was an error which significantly retarded his pro-
gress in the next two years before he stated correctly that k = − ½.

As far as Ampère was concerned, “The physical theory of electrodynamics was 
now complete. Given the concepts of the ether and the electromotive force of mat-
ter as Ampère had formulated them, all the observed effects could be explained; 
not only explained, but subjected to mathematical analysis. The combination was 
a potent one and the accuracy of Ampère’s calculations and the depths of his in-
sight led many to embrace his theory” (Williams, p. 150).

Not everyone was convinced of the identity of electricity and magnetism, how-
ever. Humphry Davy (1778-1829) expressed doubts in a letter to Ampère of 20 
February 1821. Ampère’s idea of magnetism created by circulating electric cur-
rents was also in direct opposition to a theory put forward by Johann Joseph 
von Prechtl (1778-1854), and supported by Berzelius (1779-1848), according to 
which electromagnetism was ‘transverse magnetism’ – whereas Ampère eliminat-
ed magnetism and showed how all the phenomena could be accounted for by the 
action of two electric fluids, Prechtl and Berzelius reduced electromagnetism to 
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magnetic action. Berzelius expressed this view in his letter [3]; Ampère respond-
ed in a letter to Arago [4]. Ampère again stressed the ‘identity’ of electricity and 
magnetism in a lecture to the Académie on 2 April 1821 [5].

The exceptionally complicated bibliography of this work has yet to be subjected to 
scholarly analysis. The text of the first article, ‘Mémoires sur l’action mutuelle de 
deux courans électriques’, appears to be essentially identical to that of the ‘Extrait’ 
from the Annales (Dibner 62; Norman 43; Sparrow 8). However, there are very 
significant textual differences between the Extrait and the journal article in the 
Annales. The journal article and Extrait begin to diverge at p. 16 of the Extrait 
(p. 73 of the journal): the last paragraph on p. 16, through to the end of p. 18, 
has been moved (with minor changes) from pp. 212-214 of the journal version. 
There are many other changes, too numerous to detail. The Extrait is thus not 
simply a separately-printed version of the journal article, and should perhaps not 
be regarded as an ‘offprint’ in the usual sense. The second article in the present 
collection, ‘Note sur les expériences électro-magnétiques …’, was first published 
in the Annales des Mines; the journal volume is dated 1820, but as the article 
was read on December 4 it seems likely to have been published early in 1821. 
No offprints of this article are known. Again there are many significant textual 
differences between the version that appears in this collection and the journal 
article. The first such difference occurs on p. 70 (p. 536 in the journal): the sen-
tence ending “soit qu’ils soient enveloppés d’un papier ou introduits dans un tube 
de verre, afin qu’ils ne puissant communiquer avec ces filets” in the present work 
reads “soit qu’ils soient enveloppés d’un papier, ou introduits dans un tube de 
verre qui empêche leur contact direct” in the journal. The last three items in this 
collection are published here for the first time. It seems to us that the Extrait of 
the ‘Mémoires sur l’action mutuelle’ could be considered as the ‘zeroth’ version of 
this collection. We have found no record of any version intermediate between the 
Extrait and the present version of the collection, which is thus probably the first 

to contain any works other than the Extrait.

List of Contents (author is Ampère unless otherwise stated):

Premier Mémoire. De 1’Action exercée sur un courant électrique, par un autre cou-
rant, le globe terrestre ou un aimant, pp. 3–68

[AMPÈRE & Gillet de LAUMONT] Additions au mémoire précédent – note sur les 
expériences électro-magnétiques de MM. Oersted, Ampère, Arago et Biot, pp. 69–92

[BERZELIUS] Lettre à M. Berthollet sur l’État magnétique des corps qui transmet-
tent un courant d’électricite, pp. 93–99

Lettre de M. Ampère à M. Arago, pp. 99–108

Notice sur les Experiences électro-magnétiques de MM. Ampère et Arago, lue à la 
séance publique de l’Académie royale des Sciences de Paris, le 2 avril 1821, pp. 109–112

Ekelof 819; Norman 44 & 45 (later issues with 278 & 360 pages, respectively); 
Ronalds 10; Wheeler Gift 784. Assis & Chaib, Ampère’s Electrodynamics, 2015. 
Grattan-Guinness, Convolutions in French Mathematics, 1800-1840, 1990. Hof-
mann, André-Marie Ampère, 1995. Williams, Michael Faraday, 1965.
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THE SOLAR SPECTRUM -
AN EXCEPTIONALLY FINE SET

ÅNGSTRÖM, Anders Jonas. Recherches sur le Spectre Solaire. [With:] Spectre 
normal du soleil. Atlas. Uppsala: W. Schultz, 1868.

$8,500

Text: Large 4to, pp. [iv], 42, xv, [1], with lithographed frontispiece showing Ång-
ström’s spectrometer; Atlas: Oblong folio, [ii], with six plates by Robert Thalén (1827-
1905). Original brown printed wrappers. Both in exceptionally fine condition.

First edition, a very fine set in unrestored original printed wrappers, and rare thus, 
of one of the founding works of spectroscopy in which Ångström demonstrated 
the presence of hydrogen and a number of other elements in the sun; the atlas 
contains his great map of the solar spectrum. Since the plates of the atlas were 
simply laid in to the printed wrappers (and not sewn), the wrappers were often 
lost or damaged; it is rare to find these wrappers present and in fine condition 
as in our copy. In his Nobel Prize lecture, Arthur Schawlow (who shared the 
1981 prize for his contributions to the development of laser spectroscopy) wrote: 
“Fraunhofer had charted the dark lines in the spectrum of the Sun, and had 
measured their wavelengths. But it was Ångström who first identified some of 
these lines as corresponding to bright lines emitted by particular substances … 
Most importantly, he showed the red line of hydrogen.” “After 1861 Ångström 
intensively studied the spectrum of the sun, noticing the presence of hydrogen in 
the solar atmosphere and confirming the probable existence there of a number of 
other elements. In 1868 he published the monumental Recherches sur le Spectre 
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Solaire, which contained an atlas of the solar spectrum with measurements of 
the wavelengths of approximately a thousand lines determined by the use of 
diffraction gratings. Ångström expressed his results in units of one ten-millionth 
of a millimetre – a unit of length that has been named the Ångström unit in 
his honor. In order to have a precise basis for the new science of spectroscopy, 
accepted standards were needed … In 1861 Kirchhoff made a map of the solar 
spectrum and labeled lines with the corresponding scale readings of his own 
prismatic instrument. These rapidly became the almost universally accepted 
manner of designating spectral lines, but they were inconvenient because each 
observer had to correlate his own readings with those of the arbitrary Kirchhoff 
scale. Ångström’s wavelength measurements provided a more precise and 
convenient reference and, after 1868, became a competing authoritative standard” 
(DSB). Spectroscopic studies were crucial to Max Planck’s explanation of 
blackbody radiation, Albert Einstein’s explanation of the photoelectric effect, and 
Niels Bohr’s explanation of atomic structure. Spectra are used to detect, identify 
and quantify information about the chemical composition of substances in the 
laboratory, as well as in astronomy where they enable the determination of the 
chemical composition and physical properties of celestial objects.

“By the time that Ångström began his studies on spectral analysis at Uppsala, a 
fair amount of information was known, more experimentally than theoretically, 
about the solar spectrum. Optics had become a subject of intensive study during 
the first half of the nineteenth century, but there was little interest in identifying 
the cause of the lines on the spectra and in appreciating their structural 
implications … no significant progress had been made in the eighteenth century 
since Newton’s classic investigations on sunlight and his experiments with prisms 
and reflecting telescopes … Newton failed to note that the light from the sun 
is not perfectly homogeneous; instead it was [William Hyde] Wollaston (1766-
1828) who first discovered this effect by observing the rays of sunlight admitted 

through a narrow slit in a window blind. Wollaston’s initial observation of seven 
dark lines, followed by [Joseph von] Fraunhofer’s work, which included a greater 
number of lines in the solar spectrum, lies at the root of all subsequent works, 
including that of Ångström. The studies of these pioneers had shown that whereas 
sunlight differed from ordinary white light in having a spectrum of dark lines, 
colored light differed from the same white light in having a spectrum in which 
bright lines could be seen. Ångström familiarized himself with all of this work …” 
(Reif-Acherman).

“By the time he was appointed regular professor of physics, in 1858, Ångström had 
already published one of his two most famous contributions to the new scientific 
field of spectroscopy. The paper Optical Researches was published in Swedish 
in 1853 and in English and German two tears later. In it Ångström presented, 
in an unsystematic fashion, a number of experimental results concerning the 
absorption of light from electrical sparks in gases. He also made theoretical 
interpretations indicating, among other things, that gases absorb light of the same 
wavelengths that they emit when heated, and suggesting, somewhat obliquely, 
that the Fraunhofer lines could be explained in this way.

“During the priority disputes that followed Gustav Kirchhoff ’s publication of 
the law of absorption and the explanation of the Fraunhofer lines [and his map 
of the solar spectrum] around 1860, Ångström and his collaborator at Uppsala 
University, Robert Thalén (1827-1905), vigorously defended the Swede’s priority. 
Their claims were to some extent recognized also in Britain when the Royal 
Society elected Ångström foreign member in 1870 and awarded him the Rumford 
Medal two years later. These honors were also given in recognition of Ångström’s 
other important spectroscopic work, an atlas of the solar spectrum published in 
1868” (Biographical Encyclopedia of Astronomers).
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“In 1868, Ångström published his most important work, ‘Recherches sur le Spectre 
Solaire’, in Uppsala. The essay, a compendium of all of his experiments, received 
considerable international attention and became the standard of spectroscopy for 
at least a quarter of a century … Because of its considerable greater dispersive 
power [i.e., that of Ångström’s spectrometer], the information included in 
Ångström’s map surpassed the information found in Kirchhoff ’s map, and the 
number of visible bands rose accordingly … Several dark bands on Kirchhoff ’s 
map resolved themselves into arrays of tightly packed lines … The measurements 
give the places of and map the solar lines in … the entire visible spectrum, and 
the wavelengths are expressed in ten-millionths of a millimetre with two decimal 
places. Each line was rendered in ink as it appeared to the eye, with coloration 
that ranged from pale grey to coal black. The work included an atlas of close 
to a thousand spectral lines, with, for example, 390 more iron-lines than were 
previously known” (Reif-Acherman).

“For this work a high quality spectrometer with collimator and viewing telescope 
manufactured by the Berlin firm of Pistor and Martins was used. The prism was 
replaced with a transmission [diffraction] grating ruled by F. A. Norbert, of which 
Ångström had two available, with respectively 4501 and 2701 grooves ruled in 
glass … Ångström calibrated his wavelength scale by carefully measuring nine 
principal solar lines, using measurements in several orders of diffraction … 
Over 1000 solar lines were measured and tied to this scale” (Hearnshaw, p. 102). 
Ångström’s spectrometer is illustrated on the frontispiece of the text volume of 
the present work.

“The gratings were measured with a dividing engine, which allowed Ångström 
to determine the grating space by comparison with the standard meter possessed 
by the Uppsala Institute … Certain doubts that Ångström had about a major 
systematic error [that had] crept into his work, as a result of calibrating his meter, 
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were confirmed years later. In 1872, Georg Lindhagen (1819-1906) checked 
several meter standards and found that the earlier calibration of the Uppsala 
meter was incorrect, having a length of 999.94 mm instead of the 999.81 mm used 
by Ångström in his measurements. This deviation resulted in a clear systematic 
error of approximately 0.013% in all of the wavelengths previously measured. 
Ångström did not rush to revise his work, perhaps because he never thought that 
the differences in wavelengths regarding this error were as significant as were 
later confirmed, and he only commissioned this labor to his assistant Thalén in 
1874. Ångström unexpectedly died that year with the calculations scarcely begun, 
leaving this problem unresolved” (Reif-Acherman). 

“Anders Ångström (1814-1874) was an astronomical observer, physicist, and 
a pioneer in spectroscopy. His father Johan was a clergyman in the Lutheran 
church of Sweden. Ångström and his two brothers, Johan and Carl, all received 
higher education. Carl became a professor of mining technology; Johan became 
a physician and well-known botanist. Ångström studied at Uppsala University, 
and in 1839 he became a docent in physics there. As the professor in physics was 
a fairly young man, and as there were no other academic positions in physics 
other than the professorship, Ångström switched to astronomy, where there was 
a position as astronomical observer at the university.

“During the 1840s and 1850s Ångström worked as astronomical observer and 
acting professor of both astronomy and physics at Uppsala University. He did 
research in various fields during these years, for example in geomagnetism and 
the heat conduction of metals … 

“During the 1860s and 1870s Ångström and Thalén carried out a great number 
of spectroscopic measurements, not only on the Fraunhofer lines but also on the 
wavelengths of emission spectra of many substances. During these decades and 

into the early 1880s, Ångström and Thalén dominated European spectroscopy. A 
measure of their influence is the publication of lists of spectroscopic data for the 
elements carried out by the British Association for the Advancement of Science 
[BAAS] in the mid-1880s. Of 67 elements, measurements by Ångström and 
Thalén (mostly by the latter) were given for 60; no other spectroscopists came 
close to that figure …

“Ångström became a member of the Royal Swedish Academy of Sciences in 1850, 
of the Prussian Academy of Sciences in 1867, of the Royal Society in 1870, and 
of the French Academy of Sciences in 1873. He was elected a member of several 
other Swedish and foreign scientific societies as well.

“In 1845 Ångström married Augusta Bedoire, and they had four children, two 
of whom survived to adulthood. Their son Knut became a professor of physics at 
Uppsala University, succeeding his father’s successor Robert Thalén in 1896. Their 
daughter Anna married Carl Gustaf Lundquist, a student of her father’s, who in 
1875 succeeded Thalén as professor of theoretical physics. There were additional 
family ties between the Ångströms and other scientific families at Uppsala. Hence, 
Anders Ångström was a founder not only of the science of spectroscopy but also 
of a scientific dynasty” (Biographical Encyclopedia of Astronomers).

It is sometimes said that a few copies of the atlas have a further two plates showing 
the ultraviolet spectrum (although the title of the atlas clearly states Atlas de six 
Planches). All copies we have located in auction records have only six plates, 
except for a presentation copy offered by Sotheby’s, Paris in 2011, described as 
“Exemplaire bien complet de l’Atlas auquel sont ajoutées deux planches figurant 
le spectre de l’ultra-violet, d’après A. Cornu.” These extra plates do not belong 
to the work but were added later from Cornu’s ‘Sur le spectre normale du soleil, 
partie ultra-violette’, Annales Scientifiques de l’École Normale Supérieure, Sér. 2, T. 
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9 (1880), pp. 21-106, which included two plates of the ultraviolet spectrum. “The 
French scientist Marie Alfred Cornu (1841-1902), chair of physics at the École 
Polytechnique, extended Ångström’s atlas to the ultraviolet with comparable 
accuracy by using photographic methods and similar diffraction gratings” (Reif-
Acherman).

DSB I, p. 166; Norman 56; Honeyman 96. Hearnshaw, Astronomical Spectrographs 
and their History, 2009. Reif-Acherman, ‘Anders Jonas Ångström and the 
foundation of spectroscopy – Commemorative article on the second centenary of  
is birth,’ Spectrochimica Acta, Part B, vol. 102 (2014), pp. 12-23.
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PMM 285 - THE MECHANICAL 
EQUIVALENT OF HEAT

CARNOT, Nicolas Leonard Sadi. Réflexions sur la puissance motrice du feu et 
sur les machines propres à développer cette puissance. Atlas. Paris: Giraudet for 
Bachelier, 1824.

$60,000

8vo (220 x 143 mm), pp. [iv], [1], 2-118, with one folding engraved plate. Contem-
porary marbled wrappers, uncut and mostly unopened, a very faint damp stain to 
lower left margin, an exceptional copy preserved in its original state. Custom mo-
rocco box.

First edition, very rare, and a fine copy in original state, of Carnot’s only published 
work, which led directly to the first and second laws of thermodynamics. “Carnot, 
one of the most original thinkers among physical scientists, applied himself to the 
analysis of the cyclical operation of [heat] engines” (Dibner). “Carnot’s treatise on 
the motive power of heat, which contains the first (albeit imperfect) statement of 
the second law of thermodynamics, was written to address a practical engineering 
problem that had occupied French physicists since 1815 – namely, how heat 
could be used most economically in the production of motive power … Carnot’s 
originality lay in his recognition that the motive power of a heat engine was 
independent of the nature of the substance generating it – that it was a function, 
instead, of the transfer of heat from a warmer to a colder body. He also introduced 
the fundamental thermodynamic concept of completeness of cycle, in which 
the engine and working substance return to their original conditions. Carnot’s 
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achievement was largely ignored by his contemporaries, and the Réflexions 
remained forgotten until rediscovered by William Thomson (Lord Kelvin) in the 
1840s; Kelvin, one of the founders of modern thermodynamics, said of Carnot’s 
work that ‘nothing in the whole range of natural philosophy is more remarkable 
than the establishment of general laws by such a process of reasoning’ (quoted in 
Fox, p. 1). The first edition of Réflexions was published in an edition of six hundred 
copies (see Fox, p. 23, illustrating the printer’s bill)” (Norman). The Réflexions is 
now regarded as one of the great rarities of 19th-century science, and copies such 
as ours in completely original state are extremely difficult to find.

“After a concise review of the industrial, political, and economic importance 
of the steam engine, Carnot [in the Réflexions] raised two problems that he felt 
prevented further development of both the utility and the theory of steam engines. 
Does there exist an assignable limit to the motive power of heat, and hence to the 
improvement of steam engines? Are there agents preferable to steam in producing 
this motive power? As Carnot conceived it, the Réflexions was nothing more, 
nor less, than a ‘deliberate examination’ of these questions. Both were timely 
problems and, although French engineers had investigated them for a decade, no 
generally accepted solutions had been reached. In the absence of a clear concept 
of efficiency, proposed steam-engine designs were judged largely on practicality, 
safety, and fuel economy … The usual approach to these problems was either an 
empirical study of the fuel input and the work output of individual engines or 
the application of the mathematical theory of gases to the abstract operations 
of a specific type of engine. In his choice of problems Carnot was firmly in this 
engineering tradition; his method of attacking them, however, was radically new 
and is the essence of his contribution to the science of heat.

“Previous work on steam engines, as Carnot saw it, had failed for want of a 
sufficiently general theory, applicable to all imaginable heat engines and based on 

established principles. As the foundations for his study Carnot carefully set out 
three premises. The first was the impossibility of perpetual motion, a principle 
that had long been assumed in mechanics and had recently played an important 
role in the work of Lazare Carnot [Sadi’s father]. As his second premise Carnot 
used the caloric theory of heat, which, in spite of some opposition, was the most 
accepted and most developed theory of heat available. In the Réflexions, heat 
(calorique) was always treated as a weightless fluid that could neither be created 
nor be destroyed in any process. As an element in Carnot’s demonstrations this 
assumption asserted that the quantity of heat absorbed or released by a body 
in any process depends only on the initial and final states of the body. The 
final premise was that motive power can be produced whenever there exists a 
temperature difference. The production of motive power was due ‘not to an actual 
consumption of caloric, but to its transportation from a warm body to a cold 
body.’ Making the analogy with a waterwheel, Carnot observed that this motive 
power must depend on both the amount of caloric employed and the size of the 
temperature interval through which it falls. In his concept of reversibility Carnot 
also implicitly assumed the converse of this premise, that the expenditure of 
motive power will return caloric from the cold body to the warm body.

“The analysis of heat engines began … with an abstract, three-stage steam-engine 
cycle. The incompleteness of this cycle proved troublesome, and Carnot pushed 
the abstraction one step further, producing the ideal heat engine and the cycle 
that now bear his name. The ‘Carnot engine’ consisted simply of a cylinder and 
piston, a working substance that he assumed to be a perfect gas, and two heat 
reservoirs maintained at different temperatures. The new cycle incorporated the 
isothermal and adiabatic expansions and the isothermal compression of the steam 
engine, but Carnot added a final adiabatic compression in which motive power 
was consumed to heat the gas to its original, boiler temperature. In describing 
the engine’s properties, Carnot introduced two fundamental thermodynamic 
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concepts, completeness and reversibility. At the end of each cycle the engine 
and the working substance returned to their original conditions. This complete 
cycle not only provided an unambiguous definition of the input and output of the 
engine, but also rendered superfluous the detailed examination of each stage of 
the cycle. With each cycle the engine transferred a certain quantity of caloric from 
the high-temperature reservoir to the low-temperature reservoir and thereby 
produced a certain amount of motive power. Since each stage of the cycle could 
be reversed, the entire engine was reversible. Running backward, the engine 
consumed as much motive power as it produced running forward and returned 
an equal amount of caloric to the high-temperature reservoir. Joined together but 
operating in opposite directions, two engines would therefore produce no net 
effect.

“Carnot then postulated the existence of an engine that, by virtue of design or 
working substance, would produce more motive power than a ‘Carnot engine’ 
operating over the same temperature interval and with the same amount of 
caloric. A reversed ‘Carnot engine’ would be able to return to the boiler all of the 
caloric transported to the condenser by the hypothetical engine. Yet the reversed 
‘Carnot engine’ would consume only a portion of the motive power produced 
by the hypothetical engine, leaving the remainder available for external work. 
Together these two engines would form a larger engine whose only net effect was 
the production of motive power in unlimited quantities. Since such a perpetual 
motion machine violated his first premise, Carnot concluded that no engine 
whatsoever produced more motive power than a ‘Carnot engine.’ Formulating 
the result now known as ‘Carnot’s theorem’, he stated that ‘the motive power of 
heat is independent of the agents employed to realize it; its quantity is fixed solely 
by the temperatures of the bodies between which is effected, finally, the transfer 
of caloric.’ 

CARNOT, Nicolas Leonard Sadi.



“To elucidate further the motive power of heat, Carnot turned his attention to 
the physical properties of gases, a subject in which there had been considerable 
activity for over a decade. By 1823 a sizable body of experimental data on adiabatic 
and isothermal processes and on specific heats had been assimilated into the 
caloric theory of heat and mathematized by Laplace and Poisson. Combining the 
results of this activity with the concepts involved in his fundamental theorem, 
Carnot derived a series of seven theorems. With the exception of a long footnote 
in which he attempted to cast his results in algebraic form, Carnot developed 
his theorems in a synthetic, geometric manner that, although clear and logically 
rigorous, was in sharp contrast with the mathematical analysis dominant in the 
scientific community. Nonetheless, at least three of the theorems represented 
major advances. The first, that the quantity of heat absorbed or released in 
isothermal changes is the same for all gases, was experimentally established by 
Dulong in 1828, but without any reference to Carnot. In a very subtle verbal 
argument, Carnot also demonstrated that ‘the difference between specific heat 
under constant pressure and specific heat under constant volume is the same for 
all gases.’ The final theorem proved that the fall of caloric produces more motive 
power when the temperature interval is located lower rather than higher on 
the temperature scale. Although aware of the uncertainties introduced by some 
assumptions and experimental data for specific heat changes, Carnot was able to 
calculate motive power values and to verify the theorem …

“In the final section of the Réflexions, Carnot returned to his original questions 
on steam engines. With experimental data taken from the current literature he 
verified that all gases produce the same amount of motive power and was able to 
estimate the ideal limit for its production. In a review of the most common types 
of steam engines, Carnot sought to apply his findings to the practical questions 
of steam-engine design and operation. His contributions, however, fell short 
of his original goal. His conclusions—that steam ought to be used expansively 

(adiabatically), over a large temperature interval, and without conduction losses—
were already widely recognized by engineers of his time. Because of difficulties 
in engine construction even the problem of the best working substance was not 
conclusively answered.

“Although the Réflexions was regarded by contemporaries as primarily an essay 
on steam engines, Carnot’s most important innovations lay in a new approach to 
the study of heat. While he accepted, and in some theorems furthered, the theory 
of heat developed by Laplace and Poisson, Carnot also shifted the emphasis 
from the microscopic to the macroscopic. Rather than build upon the notion of 
gas particles surrounded by atmospheres of caloric, he began with the directly 
measurable entities of volume, pressure, temperature, and work …

“Although the exact reasons are impossible to determine, the Réflexions had almost 
no influence on contemporary science. The original edition had not sold out by 
1835; by 1845 booksellers had forgotten it completely. Aside from the reviews in 
1824 and the references in obituaries, Carnot’s work was mentioned only twice 
between 1824 and 1834. Clément recommended the book in his 1824–1825 
lectures and Poncelet, writing sometime before 1830, cited it in his Introduction 
à la mécanique industrielle (Paris, 1839). In Carnot’s obituary Robelin attributed 
the neglect of the Réflexions to its difficulty, an explanation that would have 
applied only to engineers and craftsmen unfamiliar with contemporary physics 
and mathematics. Another explanation points to the failure of the Réflexions to 
reach conclusions of real value to steam engineers. The silence on the part of 
physicists like Dulong, who later retraced portions of Carnot’s work, is more 
difficult to explain. One probable factor, however, was Carnot’s use of the caloric 
theory and of experimental results such as Clément’s law of saturated vapors. His 
work was thus especially vulnerable, as he realized himself, when Clément’s law 
was disproved in 1827 and when problems of radiant heat initiated a period of 

CARNOT, Nicolas Leonard Sadi.



‘agnosticism’ concerning the nature of heat.

“In 1834 Clapeyron, with whom Carnot may have been acquainted in 1832, 
published an analytical reformulation of the Réflexions. While Clapeyron 
preserved the premises, the theorems, and some of the specific arguments, 
the emphasis and style were considerably altered. He related the Carnot cycle 
to the pressure-volume indicator diagram and, emphasizing Carnot’s function, 
translated Carnot’s synthetic work from the world of heat engines to the realm 
of the mathematical theory of gases. Carnot’s work attracted no further attention 
until C. H. A. Holtzman in 1845 and William Thomson in 1848 began working on 
special aspects of Clapeyron’s paper. Between 1848 and 1850 Thomson, working 
directly from the Réflexions, published a series of papers that both extended and 
confirmed Carnot’s results. These papers constituted a strong defence for Carnot’s 
work, including his use of the caloric theory, at a time when Joule, Julius Mayer, 
and Helmholtz were establishing the convertibility of heat and work and the 
principle of energy conservation. In 1850 Clausius showed that Carnot’s theorem 
was correct as stated but that Carnot’s proof, which assumed no heat was lost, 
needed modification. Clausius added the statements that in the Carnot engine a 
certain quantity of heat is destroyed, another quantity is transferred to the colder 
body, and both quantities stand in a definite relation to the work done. With these 
additions, which Thomson also adopted in 1851, Carnot’s theorem became the 
second law of thermodynamics” (DSB).

Sadi Carnot was the eldest son of Lazare Carnot (1753-1823), who, at the time 
of Sadi’s birth in 1796, was a member of the French Revolutionary government 
(1795-99). Sadi was named after the medieval Persian poet and philosopher 
Sa’di of Shiraz. Under his father’s tuition, Sadi Carnot showed great promise 
and entered the École Polytechnique at the youngest possible age of 16. After 
graduating in 1814, Carnot went to the École du Génie at Metz to take the two-
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year course in military engineering. In 1815 Lazare was permanently exiled to 
Germany, and in 1819 Sadi left military service to live in Paris in his father’s 
former apartment. He attended courses at various institutions in Paris, and 
became interested in industrial problems and, in particular, began to study the 
theory of gases. Sadi visited his father in 1821 in his exiled home in Magdeburg, 
where he discussed steam engines with Lazare and his brother Hippolyte, who 
was then living with his father. After returning to Paris, Carnot began the work 
which led to the mathematical theory of heat and founded the modern theory 
of thermodynamics. After the publication of Réflexions in 1824, Sadi continued 
with his research, and although nothing of this was published, notes that Carnot 
made as his ideas developed have survived. In 1827, Sadi was recalled to full time 
military duties, but after less than a year he retired permanently and returned 
to live in Paris where he aimed to continue with his research into the theory of 
heat. In June 1832 he became ill and had not fully regained his strength when 
the cholera epidemic of 1832 struck Paris. Although only 36 years of age, he died 
within a day of contracting the disease. 

Bibliotheca Mechanica, p. 63; DSB III, pp. 79-83 (“the first edition of Réflexions 
… is very rare”); Dibner 155; Norman 404; PMM 285 (“His work led directly to 
the enunciation of the theory of conservation of energy by Helmholtz in 1847 
… The second law of thermodynamics is also implicit in Carnot’s treatise”). Fox, 
‘Introduction,’ in Carnot, Reflexions on the motive power of fire, ed. Fox, pp. 1-57.
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BEAUTIFUL GLOBE BOOK, WITH FOUR 
FOLDOUT CELESTIAL MAPS

CORONELLI, Vincenzo Maria. Epitome cosmographica, o Compendiosa intro-
duttione all’astronomia, geografia, & idrografia, per l’uso, dilucidatione, e fabbrica 
delle sfere, globi, planisferi, astrolabi, et tavole geografiche, e particolarmente degli 
stampati, e spegiati nelle publiche lettioni. Colonia [Venice]: Andrea Poletti, 1693.

$22,500

8vo (192 x 140 mm), pp. [xxx] (including engraved and printed titles), 420, [16], 
with 37 double-page plates, one (p. 361) with 6 volvelles (two circular plates and 
four pointers). Contemporary paper-covered boards, manuscript title in brown ink 
to spine (boards slightly rubbed and dust-soiled).

First edition, rare when complete, of this sumptuously illustrated work, a uniquely 
valuable source for the documentation of several of the most elaborate large-scale 
globes and astronomical mechanisms, some now lost, constructed during the 
latter decades of the seventeenth century. Coronelli, a Franciscan monk, was the 
official cosmographer of the Venetian Republic, the greatest maker of terrestrial 
globes and maps during the last half of the seventeenth century, and the founder 
of the Accademia Cosmografica degli Argonauti, the first geographical society. The 
Epitome is particularly important for the information Coronelli includes on the 
highly decorative and massive globes he constructed for Louis XIV, one of which 
is illustrated in this work (they can be seen today in the Bibliothèque Nationale 
in Paris). The work contains four large foldout celestial maps in circular format 
engraved in a spectacular baroque style; they were based on the most recent 
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astronomical observations and were copied into the eighteenth century. Also 
included are two large terrestrial maps – the western and eastern hemispheres. 
Of the 37 double-page plates, many illustrate globes, spheres, astronomical 
diagrams and instruments. As a leading cosmographer, Coronelli’s career bears 
on the history of astronomy at many points. “In the Epitome he listed everything 
that seemed to him important in astronomy and geography, describing, without 
making any value judgements, the systems of Ptolemy (18 lines), Tycho Brahe (17 
lines), Copernicus (132 lines), and Descartes (40 lines). Not only does he give, 
for many constellations, an account of their history or the origins of their names, 
and for all the positions of the stars, … every star is accorded a number … The 
appearances of comets since ancient times are all listed. The chapter ‘Geography’ 
contains summary descriptions of the continents, but also of the earthquakes 
and volcanic eruptions recorded since ancient times. The explorers of the more 
important regions are listed, together with lists of writings on astronomy and 
geography by authors back to the ancient Greeks” (Schmidt & Bridge, p. 100). 
Riccioli was his main source of technical information, for the earth as well as 
the heavens; other celestial information, including the only telescopic stars he 
included, was taken from Bayer and Hevelius. Coronelli was a long-standing 
friend of Edmond Halley and Robert Hooke, observing a lunar eclipse with them 
in London in 1696. ABPC/RBH list only two complete copies in last 40 years: 
Christie’s, 21 March 2012, £6875; Sotheby’s, 7 December 1989, £2640. Although 
reasonably well represented in institutional collections, it is unclear how many 
of those copies are complete (the copy in Cambridge University Library, for 
example, lacks one plate; and of the two British Library copies, one lacks two of 
the volvelles at p. 361 and the other lacks the engraved title).

The Epitome is divided into three books. The first, comprising 35 chapters (pp. 
1-208), begins with a discussion of spherical geometry, latitude and longitude, 
great circles, the tropics, winds, and climate. This is followed by a discussion of 

the stars and planets, their distances and number, the constellations, comets, and 
solar and lunar eclipses. The second book, comprising 17 chapters (pp. 209-324), 
is devoted to geography: the land and sea, the various regions of the earth (Europe, 
Asia, Africa, America, the poles), with tables of latitude and longitude of the major 
cities. There follow several chapters devoted to earthquakes and volcanic eruptions. 
The third book, divided into two parts, comprising 39 chapters, is devoted to the 
description of various globes, celestial and terrestrial, and how to use them, as 
well as information on the construction and use of popular instruments such as 
armillary spheres, planispheres, and astrolabes. Part one (pp. 325-342) describes 
and illustrates some of the most spectacular globes to be found across Europe 
(England, France, Germany). Chapter 1 describes the ‘English Globe’ produced in 
1679 by the Earl of Castlemaine (1634-1705), in collaboration with Joseph Moxon 
(1627-91). It was an immobile globe whose sphere does not rotate but is fixed 
in place over a planisphere; this allowed complex calculations to be performed 
more easily than with a turning sphere. Chapter 2 is devoted to the great globe 
of Gottorp, Germany, constructed under the supervision of Adam Olearius 
(1599-1671), which had a map of the earth’s surface on the outside and a map 
of star constellations with astrological and mythological symbols on the inside. 
Turned by water-power, it demonstrated the ‘movement’ of the heavens to those 
seated inside in candlelight – it was a predecessor of the modern planetarium. In 
chapter 3, Coronelli describes the ‘Globus Pancosmus’ of Erhardt Weigel (1625-
99), which had a circumference of 9.5 metres with interior effects such as a breeze 
which could be made to blow from any desired quarter, various elements such as 
rain, hail and thunder and images of people of different nationalities. Chapter 4 is 
devoted to Christopher Treffler’s ‘Sphaericum Automatum’, a self-moving celestial 
globe, now lost – it was for sale for the price of 8000 Talari in 1688 at the time 
Coronelli was passing through Augsburg, and his description of it appears to be 
the only surviving evidence that it existed. The fifth and final chapter in this part 
is devoted to the globes Coronelli constructed for Louis XIV, described below. 
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In part two, in 34 chapters (pp. 343-406), Coronelli describes the construction 
of globes in general: how the globe gores are designed and printed to represent 
the earth on a flat plane, how the heavens can also be represented in the plane 
by means of planispheres, how the globes themselves are assembled by gluing 
the gores onto a large ball made of wood and papier-mâché and finished with 
plaster, and how the information on the globes is to be presented. Coronelli was 
celebrated for his skill in arranging large amounts of information on his globes in 
a comprehensible yet stylistically appealing manner.

Born in Venice, Coronelli (1650-1718) was apprenticed to a woodcut printer in 
Ravenna at ten years old. On his return to Venice in 1665, he entered as a student 
in the convent of the minors of S. Nicolò della Lattuga. He demonstrated his 
precocious ingenuity as early as 1666, when he published an almanac in Venice, 
the Calendario perpetuo sacro profane,the first of almost 140 works he was to 
produce throughout his life.He was sent by his superiors to study in Rome, in the 
college of S. Bonaventura; after just three years, in 1674, he earned his doctorate 
in theology, excelling also in the study of astronomy and Euclid. A little before 
1678 he began working as a geographer and was commissioned to make a set of 
globes for the Duke of Parma, each of which was 1.8 metres in diameter. They so 
impressed Cardinal d’Estrées, ambassador to Rome and advisor to Louis XIV, that 
he invited Coronelli to Paris in 1681 to construct a pair of terrestrial and celestial 
globes for the King. They each had a diameter of fifteen feet, and were built with 
trapdoors so they could be worked on from the inside.

The present volume is particularly noteworthy for the information Coronelli 
includes on the king’s globes. Weighing two tons, these extremely ornate works 
remained until the 1920s the largest globes in the world. They stood on a marble 
base of five steps and were held by a system of four meridian-rings and a massive 
horizon-ring supported by eight pillars, all in bronze. Each had a wooden frame 
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covered with glued layers of plaster and fabric and an outer surface of very fine 
linen on which the information on the globe was painted and lacquered. Coronelli 
had made a systematic study of the history of exploration and plotted on his 
globes the discoveries of named navigators from the ninth century onwards. He 
used Portuguese sources for recent mapping of Zambesia; German for the Blue 
Nile; Dutch charting of Australia; and Narbrough’s 1670 voyage for the Strait of 
Magellan. The king’s terrestrial globe shows the track of the French Jesuit voyage 
to Siam, undertaken to establish the longitude of the capital of Siam by observing 
the satellites of Jupiter, using Cassini’s tables. Coronelli plotted the outbound 
and return voyage track on his globe, annotated with measurements of magnetic 
declination. (This preceded by more than ten years Halley’s first Atlantic voyage 
to measure magnetic declination and calculate the longitude of Barbados using 
Cassini’s tables). The globe is packed with information not only about geography 
but also about natural history, anthropology and ethnography. The astronomer 
Philippe de La Hire wrote a manual that carefully avoided linking the celestial 
globe to any of the competing cosmologies of the day. These globes established 
Coronelli’s fame, and also his fortune as smaller versions of the globes became an 
essential feature of the great houses and libraries of Europe. Coronelli was made 
royal cartographer to Louis XIV in 1681 as a result of making these great globes, 
and worked in Paris for two years. He collaborated with Jean Baptiste Nolin (1657-
1708), who went on to become the French publisher for all of Coronelli’s works. 
While in Paris, his contact with the Académie des Sciences gave him access to 
information about the latest French explorations, including those of La Salle in 
North America, and these contacts continued. 

After his stay in Paris, Coronelli lived and worked in various European countries. 
He returned to Venice in 1683, and in the following year founded the Accademia 
Cosmografica degli Argonauti (named after Jason and the Argonauts, the 
adventurers who set out to find the golden fleece). Among the preliminary leaves 

of the Epitome is a list of members of this society, which reveals that it counted 
princes, ambassadors and cardinals amongst its members. They were to receive 
a minimum of six copper engravings a month, creating a guaranteed market 
for Coronelli’s productions. By 1693 the Accademia had 260 members spread 
throughout Europe. 

Having returned home to Venice, Coronelli turned his rooms in the Gran Casa 
dei Frari into one of the world’s leading globe-making workshops, besides 
accommodating a substantial production of maps, prints, and books in what 
he called his ‘Laboratorio dei Frari.’ From 1687 until 1707, he directed a large 
workshop of mapmakers producing high-quality publications crucial to the 
evolution of cartography. Coronelli was named cosmographer of the Serene 
Republic of Venice, and was in charge of depicting the victorious battles fought 
by his compatriots during the Venetian-Turkish War of 1684-1687. Coronelli 
published an ambitious multi-volume atlas, theAtlante Veneto, in 1691, which was 
intended to be an extension of Blaeu’s atlas in three parts, covering hydrography 
and ancient and modern geography. Coronelli was known as a careful scholar, and 
his work across Europe gave him access to the latest information. For example, he 
produced the first widely published European map of settlements in New Mexico, 
‘America Settentrionale’ (1688), after being given the information by a former 
governor of New Mexico, Diego de Peñalosa. By the time of his death, Coronelli 
had published hundreds of maps, as well as the first six volumes of the Biblioteca 
Universale Sacro-Profana, considered to be the first encyclopedia with entries in 
alphabetical order.

In 1696 Coronelli travelled with the Venetian ambassadors to Germany, the 
Netherlands and England. In London he was able to present on 11 May a pair of 
1½-foot globes (celestial and terrestrial) to William III, for which he was rewarded 
with 200 gold guineas. On 16 May, Coronelli observed a total eclipse of the 
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moon, as well as Jupiter and its satellites, with members of the Royal Society and 
especially his ‘long-standing friends’ Robert Hooke and Edmond Halley (Viaggi 
del P. Coronelli (1697), vol. 2, p. 154). In the same month he visited the universities 
of Oxford and Cambridge, and was elected a fellow of the Royal Society. Coronelli 
brought with him to England a quantity of sheets of globe gores to sell. He was in 
the process of compiling a large volume, the Libro dei Globi (published in 1697), 
containing the gores of all five pairs (terrestrial and celestial) of his printed globes, 
ranging from 5 cm to 108 cm in diameter. He marketed this as an atlas, from 
which customers could have globes made if they wished.

In spite of the antagonism and opposition of most of the members of his own 
order, in 1701 Coronelli, a favourite of Pope Innocent XII (1691-1700), was 
elected Superior General of his order. In 1704, however, the new pope, Clement 
XI (1700-1721), removed him from office because of his unsatisfactory leadership 
qualities with his confrères, and following accusations of misuse of the order’s 
funds to finance his publications. After such a scandal, Coronelli was reduced 
to spending his twilight years rather disagreeably in his ‘Convento dei Frari’ in 
Venice, disliked by most of his brothers and shunned by many of his former 
patrons and protectors. There, he mainly sold guides to Venice and reprints of 
his maps and views. When he died, in 1718, all the copperplates of his works 
were sold to pay for roofing and drain pipes, and to cover the many debts of his 
publishing firm. 

Coronelli’s was a career full of contradictions. His selling success was due to a 
steady advertising effort, by courting not only princes but also their librarians, 
and by promising to the public high-standard publications at low, convenient 
prices. An example of his commercial originality is his novel subscription scheme 
for financing his first pair of printed globes, coupled with the Atlante Veneto, in 
which subscribers to both became members of the Accademia Cosmographica 
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degli Argonauti. But the ground on which his success was built was not solid. 
Coronelli never sold enough globes, maps, prints and books to cover his editing, 
engraving, printing and globe-mounting expenses. He therefore asked for money 
from the Republic of Venice and later from his Order, which he received for 
twenty years. 

Coronelli had skilfully obtained the favour of the Venetian ruling class by 
adopting the right degree of obsequiousness. But his success was more than the 
good fortune of an able courtier and skilful craftsman. By returning from Paris 
to Venice with the astronomical and geographical materials used for the king’s 
globes and atlases, the friar had enriched the Republic with assets whose value in 
extolling the image of the city was evident. Thanks to his work, for a brief period, 
Venice once again became the capital of geographical information – something 
the Republic had ceased to be more than a century before, just as – at least in the 
eyes of the Venetians themselves – Venice was again one of the leading forces in 
European politics, fighting the Turks at the Pope’s request, at the Emperor’s side, 
in a war in which France had refused to take part. 

When in 1705 the question was raised whether the Republic had really gained 
the expected advantages from the stipends bestowed on Coronelli, many people 
judged that the fruits produced by those payments – his maps and globes and his 
teaching – were rich and worthy of praise. During Coronelli’s lifetime, geography 
was highly fashionable even at the courts, where it was admired not only for its 
various traditional and practical uses, especially in warfare, but also as a science 
for men of quality. Without any knowledge of it they would be incapable of waging 
war or, even more importantly, talking about it in a salon. On the other hand, 
a Republic whose treasury was being drained by war was in the end forced to 
consider this matter purely in terms of costs and benefits. When he lost external 
funds Coronelli could not survive as a publisher.

Most copies of the Epitome lack several of the plates, and sometimes the engraved 
or printed titles.

Riccardi I: 374-5; Houzeau & Lancaster 8006; Macclesfield 563 (lacking first quire 
including title, two plates & final leaf); Nordenskiold Collection 57 (28 plates 
only); Wardington 117 (lacking printed title); Armao, Vincenzo Coronelli (1944), 
p. 189 (collation as this copy); Warner, The Sky Explored, pp. 56-7. Milanesi, 
Vincenzo Coronelli, Cosmographer (1650-1718), 2016 (the best account of 
Coronelli’s life and work, from which much of our description is taken). Schmidt 
& Bridge, ‘Vincenzo Coronelli’s methods of work. A supplement to the article 
in ‘Der Globusfreund’ 43/44,’ Globe Studies No. 59/60, Papers Read at the 12th 
International Symposium for the Study of Globes, Jena 2011 (2014), pp. 96-111.
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PMM 318 - THE BEGINNINGS 
OF PHOTOGRAPHY

DAGUERRE, Louis-Jacques Mande. Historique et description des procédés du 
daguerréotype et du diorama. Paris: Bethune and Plon for Susse freres and Del-
loye: 1839.

$95,000

8vo (212 x 138 mm), pp. [iv] (half-title, notice of publisher, title page, table of con-
tents), 79, [1], [4] (advertisements), with six lithographed plates. Original printed 
yellow wrappers (minor loss to ends of spine, upper right corner of front wrapper 
creased and slightly chipped). An excellent, unrestored copy. 

First edition, second but first obtainable issue (see below), of Daguerre’s exposition 
of his photographic process, ‘the beginnings of photography” (Horblit); this is a 
fine copy in original printed wrappers and very rare in this condition. “Perhaps 
no other invention ever captured the imagination of the public to such a degree 
and conquered the world with such lightning rapidity as the daguerreotype” 
(Gernsheim, The History of Photography, p. 71). “The daguerreotype is a 
photographic image with a mirror-like surface on a silver or silver-coated 
copper plate. A unique photograph, the daguerreotype is not produced from a 
negative, and the final image appears either positive or negative depending on 
the angle of reflected light” (Hannavy, p. 365). Daguerre (1787-1851), a gifted set 
designer and creator of the famous Diorama, a picture show based on lighting 
effects, began experimenting in the 1820s with fixing the images of the camera 
obscura on silver chloride paper. His lack of success stimulated his interest in 
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the heliographic method invented by Nicéphore Niépce (1765-1833), who had 
produced the first successful photographic image in 1826 or 1827 on a pewter 
plate coated with bitumen of Judea dissolved in oil of lavender, and in 1829 
Daguerre succeeded in persuading the reluctant Niépce to become his partner. 
After Niépce’s death in the spring of 1835, Daguerre serendipitously discovered 
a quicker method of exposing and developing the Niépcian image through the 
application of mercury vapour. Using this method, with common table salt as the 
fixative, he produced his first successful permanent photographic image in 1837. 
On August 19, 1839 the scientist-politician François Arago (1786-1853) made a 
full announcement of the new process to a packed house at a joint meeting of the 
Académies des Sciences and des Beaux-Arts at the Institut de France. Daguerre’s 
manual, published by order of the government, quickly sold out. A total of 39 
reprints, new editions, and translations appeared in the following 18 months. The 
great demand accounts for the profusion of issues of the first edition: seven are 
recorded, all from the same basic setting of type. Of these the first four differ 
in the booksellers’ names alone. The present copy is of the first Susse issue, the 
second to appear, preceded only by the Alphonse Giroux issue, published shortly 
after Arago’s 19 August announcement, of which only three copies are known.

“Louis-Jacques Mandé Daguerre was born on 18 November 1787 at Cormeilles-
en-Parisis. His childhood was spent at Orleans, where his father was employed as 
a clerk on the royal estate. Showing talent for drawing, the boy was apprenticed 
to an architect at the age of thirteen, and three years later became a pupil of 
Degotti, scene  painter at the Paris Opera. Later he made himself independent 
and designed the decor for the productions of several Paris theatres. He also 
collaborated with Prevost on a number of large panoramas – a kind of show which 
enjoyed immense popularity in the last decade of the eighteenth and first half of 
the nineteenth centuries … In 1822 Daguerre associated himself with the painter 
Charles Bouton (an assistant of Prevost) in a new venture, the Diorama, a picture 

show with changing light effects which aroused astonishment and admiration by 
its perfect illusion of reality” (Gernsheim, p. 65).

The realism of the paintings in the Diorama, which so impressed Daguerre’s 
audiences, was achieved by tracing images projected by a camera obscura. “Was 
it not natural that he, like Fox Talbot some years later, should have wished to find 
a method by which the fugitive image, which he was so laboriously tracing, could 
be made to delineate itself? Obsessed by this idea, Daguerre equipped a laboratory 
at the Diorama near the Place de la République in Paris, and there for several 
years he carried out mysterious experiments, shutting himself in his workroom 
for days on end. The famous chemist, J. B. Dumas, relates that Madame Daguerre 
consulted him one day in 1827 as to whether or not he thought it possible that 
her husband would be able to fix the images of the camera. ‘He is always at the 
thought; he cannot sleep at night for it. I am afraid he is out of his mind; do you, 
as a man of science, think it can ever be done, or is he mad?’ ‘In the present state 
of knowledge’, replied Dumas, ‘it cannot be done; but I cannot say it will always 
remain impossible, nor set the man down as mad who seeks to do it’” (ibid., p. 66).

Daguerre’s fortunes changed only when he came into contact with Nicéphore 
Niépce. “Niépce’s first experiments with light-sensitive materials placed in a 
homemade camera obscura were conducted in 1816. He succeeded in taking 
impressions of views out of his workroom window using paper covered with 
muriate (or chloride) of silver, but the images were not permanent. Moreover, 
they were negative images, and attempts to print them in the positive were not 
successful … It was at this point that he began to experiment with bitumen of 
Judea as a light-sensitive coating. The bitumen, he had discovered, hardened 
when exposed to the sun’s rays, whereas parts that had not been exposed could be 
dissolved and washed away by oil of lavender. The result was a fine image formed 
where light had fallen … He began to refer to his efforts to take directly the image 
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of nature as ‘heliographic,’ i.e., drawn by the sun” (Hannavy, p. 1004). 

“Daguerre first contacted Niépce in January 1826, after hearing about his 
heliographic experimentation from the optician Vincent Chevalier. Niépce 
eventually visited Daguerre at the Diorama in August 1827, and the two men 
formed a company on 14 December 1829 in order to exploit both Niépce’s 
invention, based on the photosensitivity of bitumen of Judea, and Daguerre’s 
improvements to the camera obscura. After Niépce’s death (5 July 1833), Daguerre 
signed a new contract in 1835 with Niépce’s son, Isidore” (ibid., p. 365). 

“Building upon the materials used by his partner [Niépce] – silvered copper 
plates, and iodine with which to strengthen the image – Daguerre discovered in 
1831 the light-sensitivity of iodide of silver, which he produced by subjecting a 
silvered copper plate to iodine vapour, as Niépce had done for a different purpose. 
This silver salt, however, was not sensitive enough to produce an image, and it was 
not until the spring of 1835 that Daguerre was in a position to ask Isidore Niépce, 
who according to the contract had succeeded his father, to come to Paris to look 
at important results.

“Daguerre had just discovered the possibility of developing the latent image. How 
it happened is one of the classic legends of photography. Daguerre put away in his 
chemical cupboard a plate which had been exposed – apparently as unsuccessfully 
as usual – intending to re-polish and use it again. When, a few days later, he opened 
the cupboard he found, to his amazement, the under-exposed plate impressed 
with a distinct picture. He quickly made a number of exposures as before, put the 
plates in the cupboard one at a time, and by a lengthy process of elimination of 
the various chemicals it contained he at length established that the vapour from a 
few drops of spilt mercury from a broken thermometer had worked the miracle. 
Daguerre him self stated, however, that he had been experimenting with several 
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mercurial com pounds, from which ‘it was only a short step to the vapours of 
metallic mercury, and good fortune led me to take it.’ This proved the solution 
to the whole problem, for by this means Daguerre established that a plate need 
receive only a comparatively short exposure of 20 minutes to half an hour and 
that the latent image could then be made visible by an after-process.

“Though the images were still not permanently fixed, Daguerre felt that his dis-
covery was such an immense improvement upon Niépce’s results that the firm 
should from now on be called Daguerre and Isidore Niépce instead of Niépce-
Daguerre. Isidore, in need of money, unwillingly agreed to this, in a signed codicil 
to the original contract, on 9 May 1835.

“Having been brought an important stage nearer his goal, with his usual self-
assurance Daguerre triumphantly but prematurely claimed that he had succeeded 
in fixing the image of the camera obscura, including portraits. In fact it was not 
until the first half of 1837 that he was really able to fix his pictures permanently, 
using a solution of common salt in hot water, whilst the application of the process 
to portraiture was left to later experimenters …

“Having at last succeeded in fixing the image of the camera obscura by quite dif-
ferent methods from Niépce’s, Daguerre felt that his own discoveries had improved 
the original heliographic process out of all recognition, and in spite of the terms 
of the original contract, it is perhaps understandable that he should now insist on 
calling the invention by his name alone – daguerreotype. Isidore Niépce at first 
indignantly refused to sign the new contract which Daguerre had prepared, but 
when his partner threatened to publish his process and heliography separately, 
he gave way (though he protested later), for it was obvious that no one would 
be interested commercially in the slower process. Moreover, it was clear that 
Daguerre was concerned only with the honour of being considered the inventor, 

for he still agreed that the profits from the new process should be divided equally.

“Having settled this delicate matter to his satisfaction, Daguerre suggested to 
Niépce a public subscription to run from 15 March to 15 August 1838, calling for 
four hundred subscribers at 1,000 francs each, and stipulating that the processes 
of heliography and daguerreotype should not be made public unless there were at 
least one hundred subscribers. If sold outright, the price for the inventions should 
be not less than 200,000 francs (at that time about £8,000).

“During the next few months Daguerre attracted all the publicity he could by 
driving round Paris with the apparatus on a truck, photographing monuments 
and public buildings; but he failed to find buyers for the shares, or a Maecenas to 
put down the lump sum required. So, towards the end of 1838, he approached a 
number of leading scientists, including J. B. Dumas, Biot, Humboldt, and Arago, 
with the purpose of interesting the Government. He was fortunate in finding 
in François Dominique Arago an influential ally, for he was a member of the 
Chamber of Deputies as well as a distinguished physicist and astronomer. Soon 
afterwards, Arago gave the discovery official status by a brief announcement at 
the Académie des Sciences, on 7 January 1839” (Gernsheim, pp. 66-68). By this 
time a final contract had been signed, naming Daguerre as the sole inventor of 
the new process.

“Arago formally divulged the process to a joint meeting of the Académie des 
Sciences and Académie des beaux-arts on 19 August 1839, after King Louis-
Philippe signed the law granting lifetime pensions to Daguerre and Isidore Niépce 
on 7 August 1839” (Hannavy, p. 365). Arago’s report was published at Paris by 
Bachelier on 31 August 1839 as Rapport sur la daguerréotype, very shortly after 
the first issue of Daguerre’s manual appeared. Arago regrets “that the inventor 
of this ingenious apparatus could not himself be responsible for presenting all 
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of its properties before the Academy.’ He then gives a technical and chemical 
description of the new process. 

“According to the terms of the law, Daguerre was required to publish details 
of the daguerreotype process and techniques for painting diorama pictures. 
In addition to Arago’s public explanation of the technical production of 
daguerreotypes, Daguerre produced an illustrated manual outlining the various 
steps of the process. Daguerre added his correspondence with Niépce, in which 
he suggests experimenting with the photosensitivity of silver and iodine, in 
order to demonstrate that the daguerreotype was indeed his own invention. His 
cited letters – which document the fact that Daguerre’s systematic experiments 
with silver nitrate, and eventually mercury, led him to the discovery of his own 
photographic process – only revealed part of the picture. In fact, Niépce had 
already used iodine, but only as a kind of ‘developing agent’ to darken the shaded 
parts of his proofs. Daguerre’s claims in the manual angered Niépce’s son, Isidore, 
who responded with his own pamphlet [Histoire de la découverte improprement 
nommée daguerréotype, 1841], in which he asserted that his father invented the 
daguerreotype” (ibid.).

“Daguerre’s epoch-making invention was as yet far from perfect, and it was left to 
other scientists, American, English, French, and Austrian, to speed up the process 
and make it applicable to portraiture – the great desideratum. The daguerreotype 
suffered from inherent disadvantages and for this reason the process must be 
regarded as a cul-de-sac: 

(a) The mirror-like surface of the silvered copper plate makes the picture difficult 
to see. 

(b) The picture, being a direct positive, was laterally reversed. 
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(c) Being on a plate of solid metal, it could not be used as a negative to print 
copies; each picture was unique. To overcome this, numerous processes were 
evolved to convert daguerreotypes into printing plates, but the procedures were 
too complicated for general use” (Gernsheim, p. 73).

Although Daguerre’s manual was preceded in publication by William Henry Fox 
Talbot’s account in February 1839 of his radically different process of ‘Photogenic 
Drawing’, with the appearance of the daguerreotype process it became possible 
to obtain mirror–like images of the world of considerable evocative impact, not 
approached by the rather primitive techniques of photography on paper which 
were still effectively limited to photogram production (widely known, though 
lacking a solution to the problem of preservation, long before January 1839) 
without the use of a developable latent image. The first daguerreotypes rightly had 
very considerable impact. Although the product itself was not capable of further 
evolution it did imaginatively open the eyes of the first practitioners to a quality 
of picture that could be obtained with a camera and provided them from the very 
first a method of working in which an image although still invisible after exposure 
(‘invisible et seulement latente’) could be revealed by later chemical treatment.

According to Beaumont Newhall, the first issue was released on or about 20 
August 1839 and bears the imprint of Giroux et Cie, and Delloye. The printing 
was performed by Béthune et Plon. Of this, only three copies are known to have 
survived. On 14 September, copies of this first printing by Béthune et Plon, 
were released for sale with the imprint of Susse Freres, Editeurs, and Delloye. 
It is identical to the first issue with the exception of the imprint, and the three 
pages of advertisements which follow the text (for this reason, this second issue is 
sometimes referred to as the first issue, second imprint). 

Dibner 183; En français dans le texte 255; Grolier/Horblit 21a (4th issue); Norman 

569; PMM 318b; Roosens and Salu 2778a; Sparrow 46. Beaumont Newhall, An 
historical & descriptive account of the various processes of the Daguerreotype & 
Diorama by Daguerre, 1971 (see pp. 269-277 for a chronological listing of the 
numerous printings). Gernsheim, The history of photography, 1969. Hannavy 
(ed.), Encyclopedia of nineteenth-century photography, 2013.
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EDISON’S ELECTRIC LAMP - THE COPY 
OF CHARLES BATCHELOR

EDISON, Thomas Alva. Specification of Thomas Alva Edison. Electric lamps. No. 
4576, 10 November, 1879. [Bound with thirteen other patents, including eight 
more by Edison, most concerned with electric lighting, the design and manufac-
ture of light bulbs, and the supply of electricity]. London: Published and sold at 
the Commissioners of Patents Sale Department [British Patent Office], 1880.

$27,500

Contemporary half-calf (a little rubbed, some well done leather restoration to spine), 
spine label titled ‘Edison’s Electric Light – British Patents 1878-80.’ Charles Batche-
lor’s library stamp on front paste-down, two labels from a later institutional library 
on rear endpapers.

First edition, of the greatest rarity, of the first British patent granted to Edison 
for his most famous invention, that of an incandescent electric light. Perhaps 
more than any other, it was this invention that ushered in the modern age. This 
British patent, filed just six days after the US patent 223,898, enabled Edison and 
his English rival Joseph Swan to establish an effective monopoly on the electric 
lighting market in Britain until Edison’s patent expired in 1893 (see below). This is 
the finest possible association copy, having formed part of the working library of 
the English-born engineer Charles Batchelor, Edison’s ‘right-hand man’ for several 
decades, and his chief experimental assistant from 1873. This patent is extremely 
rare even in institutional collections – no copy is listed on OCLC, although there 
is a copy at Rutgers, which holds the bulk of Charles Batchelor’s papers. We have 
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located no copy in auction records, and the last copy on the market was offered 
almost 80 years ago. The US patent has been selected as one of the 100 most 
important documents in the US National Archives.

“The invention that Edison is most remembered for is, by far, the electric light 
bulb. At the age of thirty-one, he decided to focus his energies–and the manpower 
of the Menlo Park facility–toward creating an electric light system. He began 
work in the fall of 1878, after returning from a vacation with the physicist George 
Barker. Barker had encouraged Edison to work on creating an electrical system 
and discussed ideas with him about it. Edison recognized the staggering potential 
of an electrical light system and decided to focus on creating one, having just 
finished work on the phonograph. 

“At this time, gas lamps lighted most American cities. Other inventors had already 
done some pioneering work in the electrical light field, especially Humphrey 
Davy in 1802 (who first produced “incandescence,” an electric current flowing 
through wire) and the Englishman Joseph Swan in 1860 (who produced many 
experimental incandescent lamps). But no one had been able to completely solve 
the practical problems of creating an effective and reliable lamp.

“From October 1878 until New Year’s Day, 1880, Edison developed the components 
for a lighting system. His experience with telegraph technology assisted him as he 
tried to envision a system of relays and circuit breakers that would be necessary 
to making a lamp work. The main problems were locating the proper filament 
for the incandescent spiral and constructing a lamp that had enough pressure to 
contain the filament. He perfected new vacuum techniques for the latter problem 
and rejected the spiral filament in favor of a filament of carbonized thread.

“When the lamp with carbonized thread lasted for forty-five hours the staff at 

Menlo Park realized that they had had a breakthrough. Edison claimed, “none 
of us could go to bed, and there was no sleep for any of us for forty hours.” In 
November 1879 they tried using carbonized cardboard, and soon they had 
created an experimental bulb that was superior to any of the others they had 
tested” (sparknotes.com/biography/edison/section5.rhtml)

While other incandescent lamps were created before his, Edison’s version was 
able to outstrip the others because of a combination of three factors: an effective 
incandescent material, a higher vacuum than others were able to achieve (by 
use of the Sprengel pump) and a high resistance that made power distribution 
from a centralized source economically viable. “The English scientist Joseph 
Swan (1828-1914) and Thomas Edison in the United States were the two men 
mainly responsible for the invention of a workable electric light bulb, a new stage 
in the development of electrical power. Swan demonstrated his tubular electric 
light bulb in Newcastle in 1878…. Edison ‘inventor of inventors,’ … displayed his 
incandescent lamp in 1879… In the same year he obtained British Patent 4576 
[offered here] a few months before Swan” (Briggs & Burke, Social History of the 
Media: From Gutenberg to the Internet (2010), p. 118).

“Believing both his initial incandescent lamp lacked patentable inventions and 
that the technical details were practically public knowledge, Swan did not even 
attempt to take out a patent on any of these early activities. Yet since the UK 
Patent Office did not then examine for anticipation, Edison was able to file the first 
British patent on a carbon filament incandescent electric lamp on November 10, 
1879 [the offered patent]. As Edison explained from the provisional specification, 
in the new patent carbon threads or strips are used in place of metallic wires. I 
use a block of glass onto which are sealed two platinum wires. These wires serve 
to convey the current to the electric lamp within a bulb, which is blown over 
the lamp and united to the glass block … The burner consists of a filament or 
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thread of carbon, preferably coiled, with the ends secured to the platinum wires… 
this patent turned out to be of great significance for both Edison’s and Swan’s 
companies, later used to establish a monopoly in Britain…

“Since Swan had entrepreneurial experience of patenting activities and patent law, 
he realized that he might have made a miscalculation in not patenting carbon 
filament lamps, and that this could prove harmful for his efforts to manufacture 
them commercially. In response to Edison, Swan’s first patent in 1880 was not for 
carbon filaments but for improvements that were needed to overcome practical 
problems in the production of lamps… In a practical sense, Swan’s patent 
supplemented Edison’s and together they provided the foundation patents for 
manufacturing carbon filament incandescent lamps…

“By 1882, the British Edison Company was established and planning active 
involvement in the British electric lighting market. It had plans to start developing 
electrification networks for public or private installations, controlling the electric 
lighting market by using the Edison patent of 1879. It started legal action against 
the Swan Company to prevent it from using or further developing carbon filament 
lamps that, it claimed, were produced with knowledge and practices covered in 
Edison’s patent. However, the Edison Company realized that, although lacking a 
strong patent, Swan could defend his claims through evidence of his prior research 
and publication. As they faced the prospect of a long and costly court case with a 
highly uncertain outcome, negotiations soon began for an alternative, mutually 
beneficial solution for the Swan and Edison companies. Finally, the lawyers and 
directors of both proposed a merger as the Edison and Swan Electric Lighting 
Company.

“The combined Edison-Swan Company capitalized on the Edison patent of 
1879 to establish a monopoly that, practically speaking, lasted until Edison’s 

EDISON, Thomas Alva.



patent expired in 1893” (Arapostathis & Gooday, Patently Contestable: Electrical 
Technologies and Inventor Identities on Trial in Britain (2013), pp. 178-183).

“Charles Batchelor is famous as being Thomas Edison’s “right hand man” during 
much of Edison’s long and prolific career. In his rarefied position Batchelor was 
involved in some of the greatest inventions and technological developments in 
history.

“Batchelor was born on Christmas Day, 1845, and raised in Manchester, England, 
then the heart of the British textile industry. The textile industry employed many 
engineers and mechanics, including Batchelor. He was apparently working for a 
textile equipment manufacturer in 1870 when he was sent to the United States 
to install some equipment in a Newark, New Jersey textile factory. At this time, 
Thomas Edison’s main laboratory and shop were also located in Newark. Edison 
met the 25-year-old Brit, and the two formed a working relationship that would last 
for years. While Edison basked in the spotlight of fame, the self-effacing Batchelor 
made his contributions behind the scenes. Over the course of several decades, 
Batchelor assisted Edison with some of his most important projects in the fields 
of telegraphy, telephony, the phonograph, and electric lighting. In 1873 Edison 
named “Batch” his chief experimental assistant. Together Batchelor and Edison 
would come up with prospective products. Edison also frequently entrusted 
him with responsibility for special projects, such as setting up a demonstration 
lighting system at the International Electrical Exposition in Paris in 1881. In fact, 
Batchelor stayed in Paris for the next three years as manager of the Edison electric 
light companies that were established there.

“It was Edison’s practice to give his key assistants shares in his companies and to 
let them invest in the business ventures that resulted from their inventive activity. 
Batchelor received shares in the Edison Electric Light Company (found in 1878) 

and later invested in the Edison Lamp Company (founded in 1880), the Edison 
Machine Works (1881), and the Edison General Electric Company (1888). He 
even managed the Machine Works for several years. Eventually, he was named 
treasurer of Edison General Electric when it was created in 1892” (IEEE Global 
History Network, ieeeghn.org/wiki/index.php/Charles_Batchelor). Dibner 70 (for 
the US patent).
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THE FIRST OBSERVATIONAL VERI-
FICATION OF GENERAL RELATIVITY

EINSTEIN, Albert. Erklärung der Perihelbewegung des Merkur aus der allgemei-
nen Relativitätstheorie. Berlin: Königlichen Akademie der Wissenschaften, 1915.

$8,500

Large 8vo (268 x 190 mm). In: Sitzungsberichte der Königlich Preussischen Akad-
emie der Wissenschaften, XLVII, pp.831-839. The entire issue (pp.803-842) offered 
here, in original printed wrappers. A very fine and unopened copy. Rare in such 
good condition. 

First edition, journal issue in original printed wrappers, of one of Einstein’s most 
important papers, in which “he presents two of his greatest discoveries. Each of 
these changed his life” (Pais, p. 253). “In the fall of 1915, Einstein came to the 
painful realization that the ‘Entwurf ’ field equations are untenable. Casting about 
for new field equations, he fortuitously found his way back to equations of broad 
covariance that he had reluctantly abandoned three years earlier. He had learned 
enough in the meantime to see that they were physically viable after all … and 
on November 4, 1915, presented the rediscovered old equations to the Berlin 
Academy. He returned a week later with an important modification, and two weeks 
after that with a further modification. In between these two appearances before his 
learned colleagues, he presented yet another paper showing that his new theory 
explains the anomalous advance of the perihelion of Mercury. Fortunately, this 
result was not affected by the final modification of the field equations presented 
the following week” (Janssen, pp. 59-60). “The first result [reported in the present 
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paper] was that his theory [of general relativity] ‘explains … quantitatively … the 
secular rotation of the orbit of Mercury, discovered by Le Verrier, … without the 
need of any special hypothesis.’ This discovery was, I believe, by far the strongest 
emotional experience in Einstein’s scientific life, perhaps in all his life. Nature had 
spoken to him. He had to be right. ‘For a few days, I was beside myself with joyous 
excitement’. Later, he told Fokker that his discovery had given him palpitations of 
the heart. What he told de Haas is even more profoundly significant: when he saw 
that his calculations agreed with the unexplained astronomical observations, he 
had the feeling that something actually snapped in him” (Pais, p. 253). “Einstein 
devoted only half a page to his second discovery: the bending of light [by gravity] 
is twice as large as he had found earlier. ‘A light ray passing the sun should suffer 
a deflection of 1”.7 (instead of 0”.85)’” (Pais, p. 255). The confirmation of this 
prediction four years later by Dyson and Eddington not only confirmed Einstein’s 
theory, but also made Einstein world famous. 

“Einstein’s discovery resolved a difficulty that was known for more than sixty 
years. Urbain Jean Joseph Le Verrier had been the first to find evidence for an 
anomaly in the orbit of Mercury and also the first to attempt to explain this effect. 
On September 12, 1859, he submitted to the Academy of Sciences in Paris the 
text of a letter to Herve Faye in which he recorded his findings. The perihelion 
of Mercury advances by thirty-eight seconds per century due to ‘some as yet 
unknown action on which no light has been thrown … a grave difficulty, worthy 
of attention by astronomers.’ The only way to explain the effect in terms of known 
bodies would be (he noted) to increase the mass of Venus by at least 10 per cent, 
an inadmissible modification. He strongly doubted that an intramercurial planet, 
as yet unobserved, might be the cause. A swarm of intramercurial asteroids was 
not ruled out, he believed. ‘Here then, mon cher confrere, is a new complication 
which manifests itself in the neighborhood of the sun.’ Perihelion precessions of 
Mercury and other bodies have been the subject of experimental study from 1850 

up to the present. The value 43 seconds per century for Mercury, obtained in 1882 
by Simon Newcomb, has not changed. The present best value is 43”.11 + 0.45. The 
experimental number quoted by Einstein on November 18, 1915, was 45” ± 5. 

“In the late nineteenth and early twentieth centuries, attempts at a theoretical 
interpretation of the Mercury anomaly were numerous. Le Verrier’s suggestions of 
an intramercurial planet or planetary ring were reconsidered. Other mechanisms 
examined were a Mercury moon (again as yet unseen), interplanetary dust, and 
a possible oblateness of the sun. Each idea had its proponents at one time or 
another. None was ever generally accepted. All of them had in common that 
Newton’s 1/r2 law of gravitation was assumed to be strictly valid. There were also 
a number of proposals to explain the anomaly in terms of a deviation from this 
law … These attempts either failed or are uninteresting because they involve 
adjustable parameters. Whatever was tried, the anomaly remained puzzling. In 
his later years, Newcomb tended ‘to prefer provisionally the hypothesis that the 
sun’s gravitation is not exactly as the inverse square’.

“Against this background, Einstein’s joy in being able to give an explanation 
‘without any special hypothesis’ becomes all the more understandable” (Pais, pp. 
253-4).

“Let us briefly recapitulate Einstein’s progress in understanding the bending 
of light. 1907. The clerk at the patent office in Bern discovers the equivalence 
principle, realizes that this principle by itself implies some bending of light, but 
believes that the effect is too small to ever be observed. 1911. The professor at 
Prague finds that the effect can be detected for starlight grazing the sun during a 
total eclipse and finds that the amount of bending in that case is 0’’.87. He does not 
yet know that space is curved and that, therefore, his answer is incorrect. He is still 
too close to Newton, who believed that space is flat and who could have himself 
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computed the 0’’.87 (now called the Newton value) from his law of gravitation 
and his corpuscular theory of light. 1912. The professor at Zürich discovers that 
space is curved. Several years pass before he understands that the curvature of 
space modifies the bending of light. 1915. The member of the Prussian Academy 
discovers that general relativity implies a bending of light by the sun equal to 
1”.74, the Einstein value, twice the Newton value. This factor of 2 sets the stage for 
a confrontation between Newton and Einstein …

“An opportunity to observe an eclipse in Venezuela in 1916 had to be passed up 
because of the war. Early attempts to seek deflection in photographs taken during 
past eclipses led nowhere. An American effort to measure the effect during the 
eclipse of June 1918 never gave conclusive results. It was not until May 1919 
that two British expeditions obtained the first useful photographs and not until 
November 1919 that their results were formally announced. 

“English interest in the bending of light developed soon after copies of Einstein’s 
general relativity papers were sent from Holland by de Sitter to Arthur Stanley 
Eddington at Cambridge (presumably these were the first papers on the theory to 
reach England). In addition, de Sitter’s beautiful essay on the subject, published 
in June 1916 in the Observatory, as well as his three important papers in the 
Monthly Notices further helped to spread the word. So did a subsequent report 
by Eddington, who in a communication to the Royal Astronomical Society in 
February 1917 stressed the importance of the deflection of light. In March 1917 
the Astronomer Royal, Sir Frank Watson Dyson, drew attention to the excellence 
of the star configuration on May 29, 1919, (another eclipse date) for measuring the 
alleged deflection, adding that ‘Mr Hinks has kindly undertaken to obtain for the 
Society information of the stations which may be occupied’. Two expeditions were 
mounted, one to Sobral in Brazil, led by Andrew Crommelin from the Greenwich 
Observatory, and one to Principe Island off the coast of Spanish Guinea, led by 
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Eddington. Before departing, Eddington wrote, ‘The present eclipse expeditions 
may for the first time demonstrate the weight of light [i.e., the Newton value]; or 
they may confirm Einstein’s weird theory of non- Euclidean space; or they may 
lead to a result of yet more far-reaching consequences – no deflection’. Under 
the heading ‘Stop Press News,’ the June issue of the Observatory contains the text 
of two telegrams, one from Sobral: ‘Eclipse splendid. Crommelin,’ and one from 
Principe: ‘Through cloud. Hopeful. Eddington’. The expeditions returned. Data 
analysis began. According to a preliminary report by Eddington to the meeting 
of the British Association held in Bournemouth on September 9-13, the bending 
of light lay between 0’’.87 and double that value. Word reached Lorentz. Lorentz 
cabled Einstein, whose excitement on receiving this news after seven years of 
waiting will now be clearer. Then came November 6, 1919, the day on which 
Einstein was canonized.

“Ever since 1905 Einstein had been beatus, having performed two first-class 
miracles. Now, on November 6, the setting, a joint meeting of the Royal Society 
and the Royal Astronomical Society, resembled a Congregation of Rites. Dyson 
acted as postulator, ably assisted by Crommelin and Eddington as advocate-
procurators. Dyson, speaking first, concluded his remarks with the statement, 
‘After a careful study of the plates I am prepared to say that they confirm Einstein’s 
prediction. A very definite result has been obtained, that light is deflected in 
accordance with Einstein’s law of gravitation’” (Pais, pp. 303-5).  

Janssen, ‘Of pots and holes: Einstein’s bumpy road to general relativity,’ Annalen 
der Physik 14, Supplement, 2005, pp. 58-85; Pais, Subtle is the Lord, 1982; Weil 76.
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A TURNING POINT IN THE HISTORY OF 
MODERN PHYSICS

[EINSTEIN, LORENTZ, PLANCK, et al.] La théorie du rayonnement et les 
quanta: rapports et discussions de la réunion tenue à Bruxelles, du 30 octobre au 3 
novembre 1911 sous les auspices de M. E. Solvay; Publiés par MM. Langevin et M. 
de Broglie. Paris: Gauthier-Villars, 1912.

$2,500

8vo (258 x 165 mm), pp. vi, 461, [1], text illustrated throughout. Original printed 
wrappers (spine a little faded). A very fine and completely unrestored copy.

First edition, rare in the original printed wrappers, of the proceedings of the First 
Solvay Congress, widely considered a turning point in the history of modern 
physics, which was devoted to the problem of reconciling classical physics with 
quantum theory, the central problem in physics at that time. “The breakthrough 
was, in fact, achieved in 1911; the climate of thought had become completely 
transformed. The quantum concept was no longer the view of outsiders but 
became a matter of significance recognized by many leading scientists … The 
Solvay Congress in Brussels played a crucial role in this development. Physicists 
who until then had not been involved — such as Henri Poincaré — were won 
over to the quantum concept. Those already convinced were exposed to an even 
stronger and deeper impression of the significance of the quantum problem. 
Thus, Max Planck wrote to Willy Wien on December 8, 1911: ‘I certainly hope 
that our scientifically stimulating days in Brussels have also agreed with you ... 
the impressions which we had the opportunity of gathering there will give us 
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food for thought for a long time to come’ … The official report of the congress 
[offered here] represented a comprehensive handbook on the quantum problem. 
Due to the fundamental importance of the questions which it treated and in view 
of the participation of the leading physicists of the day, its publication strongly 
stimulated the interest of all physicists involved in new developments … After 
the congress, Louis de Broglie … described the great impact which the congress 
report had made on him in the following words: ‘With youthful vigor, I became 
enthusiastic about these interesting problems which had been researched, and I 
promised myself to spare no effort in gaining an understanding of the true nature 
of these mysterious quanta which Planck had introduced ten years earlier into 
theoretical physics but whose great significance had not been understood at that 
time’ … In a private discussion with Ernest Rutherford, Niels Bohr obtained, 
toward the end of 1911, ‘a vivid account’ of the discussions held at the Solvay 
Congress; when the congress report appeared several months later, Bohr studied it 
closely” (Hermann, The Genesis of Quantum Theory, pp. 141-143). The conference 
“set the style for a new type of scientific meeting, in which a select group of the 
most well informed experts in a given field would meet to discuss the problems 
at its frontiers, and would seek to define the steps for their solution” (Mehra, The 
Solvay Conferences on Physics, p. xv). During the preparation phase of the congress 
several participants were asked to write detailed reports that were mimeographed 
and copies sent in advance to the invited members. These ‘rapporteurs’ were: 
Lorentz, Jeans, Warburg, Rubens, Planck, Knudsen, Perrin, Nernst, Kamerlingh 
Onnes, Sommerfeld, Langevin, and Einstein. The discussions on these reports, 
often of great historical interest, are also fully included in the present work.

“The most important advances in physics in the 19th century were perhaps 
the development of Maxwell’s electromagnetic theory, which afforded a far-
reaching explanation of radiative phenomena, and the statistical formulation 
and interpretation of thermodynamics which culminated in Boltzmann’s relation 

between the entropy and probability of the state of a complex mechanical system. 
However, as Rayleigh’s analysis of black-body radiation had shown, the physical 
and mathematical description of the spectral distribution of cavity radiation in 
thermal equilibrium presented unsuspected difficulties.

“Planck’s discovery of the universal quantum of action in 1900 was a turning point 
in the development. It revealed a feature of “discreteness” in atomic processes, 
which was completely foreign to classical physics. Einstein not only emphasized 
the apparent paradoxes which had arisen in the detailed description of the 
interaction between matter and radiation, but provided support for Planck’s ideas 
by his investigation of the specific heat of solids at low temperatures. Einstein 
also introduced the idea of light quanta or photons as carriers of energy and 
momentum in elementary radiative processes, and successfully used it in his 
explanation of the photoelectric effect” (Mehra, pp. 13-14).

The great German physical chemist Walther Nernst, then professor at the 
University of Berlin, took notice of the development of the quantum theory, and 
particularly of Einstein’s theory of specific heat. “In spring 1910 he encountered, at 
the home of the chemist Robert Goldschmidt in Brussels, the Belgian industrialist 
Ernest Solvay. Solvay, who had invented a special process to produce sodium 
carbonate and had founded the firm of Solvay & Company in 1863, was, for a 
long time, attracted to the study of the structure of matter in the context of a 
theory of gravitation. In his meeting with Nernst at Goldschmidt’s house, Solvay 
talked about his scientific ideas and wondered whether they could be brought to 
the attention of the great physicists like Planck, Lorentz, Poincaré and Einstein. 
Nernst at once saw a great opportunity, namely, to connect Solvay’s desire to have 
his work discussed with the possibility of holding an international conference on 
the current problems of the kinetic theory of matter and the quantum theory of 
radiation. Thus he proposed a council, or conference, to be held for that purpose. 
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Solvay responded favourably and charged Nernst to explore matters further with 
Planck, Lorentz, Einstein and other prominent scientists.

“Nernst drafted a short memorandum on the plan and purpose of the conference 
he had in mind and sent it to Max Planck for comments. Planck gave a detailed 
answer; he wrote: ‘To the marginal notes that I have already made, with your 
permission, on your manuscript allow me to add a few more generalities. 
Your idea corresponds, fully and completely, to the problem whose solution is 
envisaged, and I can only associate myself with it with full conviction. However 
[he continued], I am not able to hide my great concern about its execution. As 
I have already mentioned in my marginal notes, such a conference will be more 
successful if you wait until more factual material is available’ (Planck to Nernst, 
11 June 1910). Planck thought that at that time most scientists, including many 
of those whom Nernst had suggested should participate in the conference, were 
not really excited about the quantum problems. ‘Among all those mentioned by 
you,’ he said, ‘I believe that, other than ourselves, only Einstein, Lorentz, W. Wien 
and Larmor will be seriously interested in the matter’ (ibid.). Planck, therefore, 
suggested to postpone the conference. ‘Let one or better two years go by,’ he wrote, 
‘and we shall see how the gap which begins to open in the theory shall develop, 
and how finally those who still stand at a distance will be forced to join in’ (ibid.).

“In spite of Planck’s cautious warning, Nernst went ahead with the plan. Already 
on 26 July he wrote a letter to Solvay, in which he enclosed the draft of an ‘Invitation 
to an International Scientific Conference to Elucidate Certain Current Questions 
of the Kinetic Theory.’ This draft opened with the remarks: ‘It appears that we 
find ourselves at present in the midst of an all-encompassing reformulation of 
the principles on which the erstwhile kinetic theory of matter has been based. On 
the one hand, this theory leads to a logical formulation – which nobody contests 
– of a radiation formula whose validity is contradicted by all experiments; on 
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the other, there follows from the same theory certain results on the specific heat 
(constancy of the specific heat of a gas with the variation of temperature, the 
validity of Dulong and Petit’s law up to the lowest temperature), which are also 
completely refuted by many measurements. As Planck and Einstein in particular 
have shown, these contradictions disappear if one places certain limits (doctrine 
of energy quanta) on the motion of electrons and atoms in the case of their 
oscillations around a position of rest. But this interpretation, in turn, is so far 
removed from the equations of motion of material points employed until now, 
that its acceptance would incontestably lead to a far-reaching reformulation of 
our erstwhile fundamental notions.’

“The draft then proposed that perhaps a solution might be found by ‘a personal 
exchange of views on these problems between the researchers who are more or 
less actively concerned with them’. Nernst suggested, in the draft, certain topics 
to be discussed at the conference, and he further proposed a list of eighteen 
participants with Lord Rayleigh as chairman. Solvay approved Nernst’s plan in 
principle; as for the date of the conference, which Nernst had put around Easter 
1911, he preferred to shift it to October of the same year. After due preparations 
the invitations finally went out in June 1911. All the invited scientists accepted, 
but for Joseph Larmor – who thought he had not had the time to keep up with 
the recent progress – and Lord Rayleigh – who thought of himself as ‘too poor 
a linguist’ to be useful at the conference. At the end of October the following 
participants arrived in Brussels to take part in the first Solvay Conference (30 
October to 3 November 1911): Walther Nernst, Max Planck, Heinrich Rubens, 
Arnold Sommerfeld, Emil Warburg and Willy Wien from Germany; James 
Hopwood Jeans and Ernest Rutherford from England; Marcel Brillouin, Marie 
Curie, Paul Langevin, Jean Perrin and Henri Poincaré from France; Albert 
Einstein and Friedrich Hasenöhrl from Austria; Heike Kamerlingh Onnes and 
Hendrik Lorentz from Holland; and Martin Knudsen from Denmark. Lorentz 

assumed the Chairmanship and Robert Goldschmidt, Maurice de Broglie and 
Frederick A. Lindemann acted as Scientific Secretaries of the Conference, which 
was devoted to the problems of ‘Radiation Theory and the Quanta’” (Mehra & 
Rechenberg, The Historical Development of Quantum Theory, Vol. 1, pp. 126-9).

“The discussions at the Conference were initiated after the report of H. A. Lorentz. 
He developed the arguments based on classical ideas leading to the principle of 
the equipartition of energy between the various degrees of freedom of a physical 
system, including not only the motion of its constituent material particles but 
also the normal modes of vibration of the electromagnetic field associated with 
the electric charge of the particles. These arguments, which followed the lines 
of Rayleigh’s analysis of thermal radiative equilibrium, led to the well-known 
paradoxical result that no temperature equilibrium was possible since the whole 
energy of the system would be gradually transferred to electromagnetic vibrations 
of steadily increasing frequencies …

“After the reports of Warburg and Rubens on the experimental evidence supporting 
Planck’s law of temperature radiation, Planck himself gave an exposition of the 
arguments which had led him to the discovery of the quantum of action. Planck 
was deeply concerned with the problems of harmonizing this new feature with 
the conceptual framework of classical physics. He emphasized that the essential 
point was not the introductions of a new hypothesis of energy quanta, but rather a 
reformulation of the very concept of action. Planck expressed the conviction that 
the principle of least action, which had also been upheld in the theory of relativity, 
would serve to guide the further development of quantum theory.

“Walther Nernst, in his report on the applications of quantum theory to various 
problems of physics and chemistry, considered the properties of matter at very 
low temperatures. Nernst remarked that his theorem regarding the entropy at 
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absolute zero, of which he had made important applications since 1906, now 
appeared as a special case of a more general law derived from the theory of quanta.

“Kammerlingh Onnes reported on the discovery of superconductivity of certain 
metals at very low temperatures. This phenomenon presented a great puzzle, and 
would find its explanation only several decades later …

“Paul Langevin reported on the variation of the magnetic properties of matter with 
temperature. He made special reference to the idea of the magneton, which had 
been introduced by Pierre Weiss to explain the remarkable numerical relations 
between the strength of the elementary magnetic moments of atoms deduced 
from the analysis of his measurements. Langevin showed that the value of the 
magneton could be approximately derived on the assumption that the electrons in 
atoms were rotating with angular momenta corresponding to a Planck quantum 
of action.

“Arnold Sommerfeld discussed the production of X-rays by high speed electrons 
as well as problems involving the ionization of atoms in the photoelectric effect and 
by electronic impact. Sommerfeld considered the existence of Planck’s quantum 
of action as fundamental for any approach to questions of the constitution of 
atoms and molecules …

“The last report of the conference was given by Albert Einstein. He summarized 
many applications of the quantum concept and dealt in particular with the 
fundamental arguments used in his explanation of the anomalies of specific heats 
at low temperatures” (Mehra, pp.14-15).

“Einstein’s talk was titled ‘The Present State of the Problem of Specific Heats.’ 
Specific heat – the quantity of energy required to increase the temperature of 
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a specific amount of substance by a certain amount – had been a specialty of 
Einstein’s former professor and antagonist at the Zürich Polytechnic, Heinrich 
Weber. Weber had discovered some anomalies, especially at low temperatures, 
in the laws that were supposed to govern specific heat. Beginning in late 1906, 
Einstein had come up with what he called a ‘quantized’ approach to the problem 
by surmising that the atoms in each substance could absorb energy only in 
discrete packets.

“In his 1911 Solvay lecture, Einstein put these issues into the larger context of 
the so-called quantum problem. Was it possible, he asked, to avoid accepting the 
physical reality of these atomistic particles of light, which were like bullets aimed 
at the heart of Maxwell’s equations and, indeed, all of classical physics?

“Planck, who had pioneered the concept of the quanta, continued to insist 
that they came into play only when light was being emitted or absorbed. They 
were not a real-world feature of light itself, he argued. Einstein, in his talk to 
the conference, sorrowfully demurred: ‘These discontinuities, which we find so 
distasteful in Planck’s theory, seem really to exist in nature’ …

“When he was finished, Einstein faced a barrage of challenges from Lorentz, 
Planck, Poincaré, and others. Some of what Einstein said, Lorentz rose to point 
out, ‘seems in fact to be totally incompatible with Maxwell’s equations.’ Einstein 
agreed, perhaps too readily, that ‘the quantum hypothesis is provisional’ and that 
it ‘does not seem compatible with the experimentally verified conclusions of the 
wave theory.’ Somehow it was necessary, he told his questioners, to accommodate 
both wave and particle approaches to the understanding of light. ‘In addition 
to Maxwell’s electrodynamics, which is essential to us, we must also admit a 
hypothesis such as that of quanta.’

“It was unclear, even to Einstein, whether Planck was persuaded of the reality 
of quanta. ‘I largely succeeded in convincing Planck that my conception is 
correct, after he has struggled against it for so many years,’ Einstein wrote his 
friend Heinrich Zangger. But a week later, Einstein gave Zangger another report: 
‘Planck stuck stubbornly to some undoubtedly wrong preconceptions’” (Isaacson, 
Einstein, pp. 169-170).

“The Conference helped considerably in establishing quantum theory, previously 
the occupation of a few scientists, as a field of serious and active research in 
many places and in many countries. The reports and discussions of the Solvay 
Conference also provided a great stimulus to those who had been involved in 
quantum problems for years. After all, it was the first time that a meeting of the 
leading experts in this field had taken place. They had been given the opportunity 
of meeting together personally, of presenting their respective arguments in detail, 
and of debating for several days all the fundamental as well as controversial aspects 
… However, the full impact of the Conference, also on Einstein, would show up 
only gradually. Then it would become evident that … the Solvay Conference had 
in fact achieved its primary goal: to bring the full extent of the quantum problem 
to the attention of the experts and to persuade them to cooperate more closely for 
the future growth of quantum theory” (Mehra & Rechenberg, p. 136).

The Solvay Congress had a major impact on Einstein’s academic career. Shortly 
after the meetings, Mme. Curie wrote of ‘the clarity of [Einstein’s] mind, the 
vastness of his documentation, and the profundity of his knowledge.’ Poincaré 
wrote that he was ‘one of the most original thinkers I have ever met … What 
one has to admire in him above all is the facility with which he adapts himself 
to new concepts and knows how to draw from them every possible conclusion.’ 
Lindemann later wrote, ‘I well remember my co-secretary, M. de Broglie, saying 
that of all those present Einstein and Poincaré moved in a class by themselves.’ 

[EINSTEIN, LORENTZ, PLANCK, et al.]



[EINSTEIN, LORENTZ, PLANCK, et al.]

Einstein’s move in 1912 from Prague to the ETH in Zürich was made easier by 
Mme. Curie’s and Poincaré’s strong recommendations, which were sent shortly 
after the conference. The next step, which brought him to Berlin, as a member 
of the Prussian Academy, took place in 1913, when the four Berliners (Nernst, 
Planck, Rubens & Warburg) from the Solvay Council signed the pivotal election 
proposal.

The Solvay conference became well known to the general public for another 
reason: just as it was getting under way, the romance between the widowed Marie 
Curie and Paul Langevin became public. Almost at the same moment it was 
announced that Madame Curie had won the Nobel Prize in chemistry. After the 
furore, Einstein wrote a gracious letter to her.

This first Solvay Conference was so successful that in the following year Solvay 
established a foundation, now known as the International Solvay Institutes for 
Physics and Chemistry, “to encourage the researches which would extend and 
deepen the knowledge of natural phenomena” (Mehra, p. xv) and to sponsor 
further conferences. The next two Solvay Conferences met in 1913 and 1921; 
subsequent conferences have been held every three years except during wartime.
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Four pages (280 x 216), in black ballpoint pen on four sheets of yellow lined paper, 
creases where previously folded.

A detailed draft for a talk given to the Canadian Association of Physics Students, 
in Vancouver, on the contemporary state of subatomic particle physics, its current 
difficulties and possible future developments. Although a ‘popular’ talk, it is 
pitched at a high level, appropriate to postgraduate students in physics. Feynman 
manuscripts with scientific content are very rare on the market – this is one of a 
small collection of such manuscripts that was retained by Feynman’s family until 
2018 when it was consigned to auction. Widely regarded as the most brilliant, 
influential, and iconoclastic figure in theoretical physics in the post-World War II 
era, Feynman shared the Nobel Prize in Physics 1965 with Sin-Itiro Tomonaga and 
Julian Schwinger “for their fundamental work in quantum electrodynamics, with 
deep-ploughing consequences for the physics of elementary particles.” Feynman 
refers briefly to a talk given to students in Vancouver in Surely You’re Joking Mr. 
Feynman! (p. 343): ‘In Canada they have a big association of physics students. 
They have meetings; they give papers, and so on. One time the Vancouver chapter 
wanted to have me come and talk to them. The girl in charge of it arranged with my 
secretary to fly all the way to Los Angeles without telling me. She just walked into 
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my office. She was really cute, a beautiful blonde. (That helped; it’s not supposed 
to, but it did.) And I was impressed that the students in Vancouver had financed 
the whole thing. They treated me so nicely in Vancouver that now I know the 
secret of how to really be entertained and give talks: Wait for the students to ask 
you.’ In fact, Feynman gave more than one talk to the Vancouver students, the 
offered notes probably referring to the second such talk, for in a letter to Mariela 
Johansen of April 1975, he writes: ‘I often remember vividly my most enjoyable 
trip. Many things bring it to mind – like the dark blue T-shirt in my drawer at 
home – or the interference picture in my office – or just now when my secretary 
asked me if I wanted to talk to students at a nearby university (USC 20 miles) 
or high school. My answer was that I will talk to students anytime they are near 
enough to home, or are at Vancouver, B.C.’ (The Quotable Feynman (2015), p. 
296). That these notes probably refer to the second Vancouver talk is confirmed 
by the first sentence on p. 1, in which Feynman writes: ‘Difference from last time 
… last year …’ The slides for this talk, which Feynman refers to at one point in 
these notes, are preserved in the Feynman archives at Caltech.

By 1975, what is now called the ‘Standard Model’ of particle physics was close 
to being established. It provides a ‘unified’ description of three of the four forces 
through which subatomic particles interact – the electromagnetic, weak and 
strong forces; the fourth force, gravity, has still not been unified with the other 
three. In this manuscript, Feynman summarizes the current understanding of 
the Standard Model in 1975, and discusses several significant ‘loose ends’. Some 
of these were resolved in the years following his talk, while others are still open 
today.

The first two of the three forces to be ‘unified’ were the weak and electromagnetic. 
In 1957 Julian Schwinger postulated that three different bosons (particles with 
whole number spin, that obey Bose-Einstein statistics) must be involved in 
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transmitting the weak force to take account of all the possible different ways 
the nucleons can interact in the nucleus. Two of these bosons were required to 
exchange positive and negative charges, now called the W+ and W- (weak) bosons; 
a third neutral boson, the Z0 (which Feynman calls the W0) was required for 
reactions in which no charge was transferred. In 1973, ‘neutral weak currents’ 
(i.e., interactions between particles that involve the exchange of W0 bosons) were 
observed at CERN, and the electroweak theory became widely accepted. However, 
the W+, W- and W0 bosons themselves were not observed experimentally until 
1983.

The theory of the strong force, called quantum chromodynamics (QCD), 
acquired its modern form in 1973-74. In 1964, Murray Gell-Mann and George 
Zweig (a student of Feynman) independently postulated that baryons (protons 
and neutrons) were composed of triplets of very small, strongly interacting, 
fundamental particles which Gell-Mann called ‘quarks’. It was also predicted 
that mesons were similarly composed of these same fundamental particles but 
in the form of quark-antiquark pairs. The proposed quarks had very unusual 
properties in that their charge had fractional rather than integer values. At the 
time only three types (also known as flavours) of quarks were known: ‘up, ‘down’ 
and ‘strange’ (u, d and s) with electric charges 2/3, -1/3, -1/3, respectively. The 
proton contains 2 up quarks and 1 down quark giving it a total charge of 1; the 
neutron contains 2 down quarks and 1 up quark giving it a total charge of 0; 
mesons could be composed of a variety of quark/antiquark pairs such as uu, dd, 
ud, du and others. Nobody has actually isolated or seen a single individual quark 
since they are permanently ‘confined’ within observable particles like the proton 
and neutron from which single quarks cannot escape due to the strong inter-
quark (nuclear) force, which holds the particle together.

In 1964 Oscar Greenberg pointed out that having two identical quarks in the 



hadron’s triplet of quarks violated Pauli’s exclusion principle, a basic rule of 
quantum physics which does not allow a particle to contain more than one quark 
in the same quantum state. To overcome this problem he suggested that quarks 
should have three new degrees of freedom. In 1965 Greenberg’s idea was taken 
up by Moo-Young Han and Yoichiro Nambu who introduced the notion of a 
quantum ‘colour charge’ with three possible values, red, green or blue; colours 
can also be positive or negative. Analogous to the electromagnetic force, like-
coloured charges repel each other and different-coloured charges attract, but the 
three colour charges when combined result in a neutral charge. In 1968 evidence 
of the existence of quarks was confirmed by a team at Stanford Linear Accelerator 
Center (SLAC). 

Although quarks are ‘confined’ inside hadrons, they can advertise their presence 
indirectly by generating jets of particles in high-energy collisions. For example, 
an electron and positron can annihilate each other creating a quark and antiquark 
pair. If the collision energy is high enough the quark and antiquark fly apart, 
degenerating into hadrons such as pions and kaons which are emitted as two ‘jets’ 
radiating outwards in the same plane from the collision point.

In 1974, Burton Richter from SLAC announced the results of his experiments 
with high-energy electron-positron collisions and, at the same meeting, Samuel 
Ting from Brookhaven National Laboratory announced the results of his own 
investigations into the interactions of high-energy protons on a beryllium target. 
By coincidence both experimenters had produced a stream of new particles with 
a resonance spike in the number of particles formed with an energy of 3.1 GeV 
giving the particles a mass of three times the mass of a proton. It turned out that 
they had independently produced the same new particle, now known as the ‘J/ψ’ 
particle. Investigations showed that this was a meson consisting of a charm quark 
and an anticharm quark, the first evidence of the existence of the charm, the 
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fourth quark. 

The discovery of the J/ψ (and thus the charm quark) ushered in a series of 
breakthroughs which are collectively known as the ‘November Revolution,’ as it 
triggered additional searches for unknown elementary particles, explorations that 
would reveal the final shape of the Standard Model.

This was the state of knowledge of particle physics when Feynman stood up to 
give his talk in November 1975.

On page 1 of this manuscript, Feynman begins with a recap of the situation 
in particle physics when he gave his talk ‘last year’. He recalls that hadrons are 
made of quarks, which come in three ‘colours’; other known particles include the 
photon, electron, muon, pions, … The existence of other particles was hinted at: 
the W-bosons, and a possible fourth quark. Feynman mentions that the crucial 
experiment would involve the collision of high-energy electrons and positrons, 
producing hadrons. In 1976 John Ellis, Graham Ross and Mary Gaillard theorised 
that very high-energy electron-positron collisions would result in three co-planar 
jets of hadrons. In 1979 these ‘three-jet’ events were detected by the TASSO 
team working on the PETRA particle accelerator at the Deutsches Elektronen-
Synchrotron (DESY) in Hamburg. They provided the first direct experimental 
evidence for the existence of gluons, the carriers of the strong nuclear force. In the 
last few lines of this page, Feynman refers to the experiments of Richter and Ting 
which led to the discovery of the fourth type of quark.

On page 2, Feynman discusses the theories of quarks and the colour force in more 
detail, and in particular the decay of hadrons into other hadrons. He mentions 
‘Zweig’s rule’, proposed in the 1960s, which states that when hadrons decay the 
constituent quarks have to survive (this means that some apparently possible 

decays of hadrons are actually forbidden).

On page 3, Feynman discusses how the J/ψ -particle decays into hadrons. The 
J/ψ is composed of a charm quark and a charm antiquark. The Zweig rule means 
that most modes of decay into hadrons are forbidden. This gives the J/ψ-particle 
a longer lifetime than would otherwise have been expected, and allows it to decay 
into photons, which then further decay into hadrons, or into electron-positron or 
muon-anti-muon pairs. 

On page 4, Feynman speculates that there should be a new lepton (‘heavy 
muon’). He was proved correct when, in 1975, Martin Lewis Perl and his team 
experimenting with high-energy electron-positron collisions at SLAC discovered 
the ‘tau lepton’, the most massive of the lepton family, having a mass about 3,490 
times the mass of the electron. Feynman points out that there is still no explanation 
of quark confinement, or of Zweig’s rule, and speculates that theories of weak 
interactions may lead to the existence of yet more new quarks and leptons. In this 
he was proved partially correct: in 1977 scientists at Fermilab discovered the fifth 
quark, the bottom quark, and in 1995 they discovered the sixth one, the top. To 
date, however, no further leptons beyond the electron, muon and tau, and their 
associated neutrinos and anti-particles, have been discovered.
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SIGNED OFFPRINT OF 
FEYNMAN’S THESIS

FEYNMAN, Richard Phillips. Forces in molecules. Offprint from: Physical Re-
view, Second Series, Vol. 56, No. 4, August 15, 1939. [Lancaster, PA & New York, 
NY: American Institute of Physics for the American Physical Society, 1939].

$42,500

Large 8vo (267 x 200 mm), pp. 340-343. Self-wrappers as issued, fine. Custom calf 
box with gilt spine lettering.

First edition, extremely rare offprint, inscribed by Feynman, of Feynman’s 
senior undergraduate thesis at MIT, a fundamental discovery “that has played an 
important role in theoretical chemistry and condensed matter physics” (Selected 
Papers, p. 1), published when he was just twenty-one. This is a remarkable paper, 
documenting the first steps in original research of one of the most brilliant minds 
of the twentieth century. “Feynman was one of the most creative and influential 
physicists of the twentieth century. A veteran of the Manhattan Project of World 
War II and a 1965 Nobel laureate in physics, he made lasting contributions 
across many domains, from electrodynamics and quantum theory to nuclear and 
particle physics, solid-state physics, and gravitation” (DSB). Feynman showed 
that “the force on an atom’s nucleus is no more or less than the electrical force 
from the surrounding field of charged electrons – the electrostatic force. Once 
the distribution of charge has been calculated quantum mechanically, then 
from that point forward quantum mechanics disappears from the picture. The 
problem becomes classical; the nuclei can be treated as static points of mass and 
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charge. Feynman’s approach applies to all chemical bonds. If two nuclei act as 
though strongly attracted to each other, as the hydrogen nuclei do when they 
bond to form a water molecule, it is because the nuclei are each drawn toward 
the electrical charge concentrated quantum mechanically between them” (Gleick, 
Genius: The Life and Science of Richard Feynman). His discovery, now known 
as Feynman’s theorem or the Feynman-Hellmann theorem, has endured as an 
efficient approach to the calculation of forces in molecules. “The importance of 
the forces on the atomic nuclei for molecular geometry, the theory of chemical 
binding, and for crystal structure is evident” (Selected Papers, p. 1). ABPC/RBH 
lists no copy of any offprint of any of Feynman’s papers in Physical Review (where 
he published almost all of his most important work). Not on OCLC.

Provenance: Signed ‘R. P. Feynman’ in pencil in top margin of first page. This 
offprint was signed by Feynman and given by him to Robert Kinsel Smith (1920-
99), a classmate and personal friend of Feynman’s at Princeton University, where 
both Feynman and Kinsel Smith studied for their PhDs (a letter from Kinsel 
Smith’s son testifying to this provenance accompanies the offprint).

Born in Far Rockaway in the Queens section of New York City, Feynman (1918-
88) entered the Massachusetts Institute of Technology (MIT) in 1935 to begin 
his undergraduate studies. Although he originally majored in mathematics, he 
later switched to electrical engineering, as he considered mathematics to be 
too abstract. Noticing that he ‘had gone too far,’ he then switched to physics, 
which he claimed was ‘somewhere in between.’ To complete their bachelor’s 
degree, all physics majors at MIT were then (as now) required to write a ‘senior 
thesis’. “Thirteen physics majors completed senior theses in 1939. The world of 
accumulated knowledge was still small enough that MIT could expect a thesis 
to represent original and possibly publishable work. The thesis should begin the 
scientist’s normal career and meanwhile supply missing blocks in the wall of 
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organized knowledge, by analyzing such minutiae as the spectra of singly ionized 
gadolinium or hydrated manganese chloride crystals … Seniors could devise new 
laboratory instruments or investigate crystals that produced electrical currents 
when squeezed. Feynman’s thesis began as a circumscribed problem like these. It 
ended as a fundamental discovery about the forces acting within the molecules of 
any substance” (Gleick).

Feynman recounted his work on the thesis in an interview with Charles Weiner 
in March, 1966. “I went to Slater [the renowned solid-state theorist John Clarke 
Slater (1900-76)], and he gave me a problem, which was … why does quartz have 
such a small coefficient of expansion? He thought that maybe the possibility was 
that the quartz crystal has moveable — see it’s silicone dioxide, SiO2 so I think 
there are oxygen’s clinging to silicones, and in the motion the oxygen can swing 
back and forth, and it’s a bent angle, turning back and forth, like the bores on the 
governor of an old steam engine, and when it turns — when this is oscillating, it’s 
the same idea — it pulls the heads of the steam engine together, the ends, because 
the bore goes out by centrifugal force. And so the bent bottom will be shortened 
— I mean, it will be pulled together by the motion — and this will compensate 
the ordinary effects which tend to make something expand, so that the expansion 
will be much less than usual. Can I work out any details or estimates or something 
to show that in fact that’s the reason that quartz doesn’t expand? All right, that 
was the problem. I was very interested in it. The first thing I did was, I looked 
up the forms, crystobalite A, crystobalite B, crystal forms, and so on, to get the 
idea of the bonds and the angles and so on. I got in the crystal business. Then I 
realized I’d have to figure out how a change in forces will change the dimensions 
of the crystal. So then I got involved … with the connection between the forces 
between the atoms, and the forces — all together. For example, if a crystal is 
compressed, what is the compressent strength? Supposing I assume certain spring 
constants between all the atoms and I want to know what the elastic constants 



of the whole crystal are. I realized that what I had to do there was an infinite 
bridge truss problem, like the guys in applied engineering with bridges with a lot 
of members. I had an infinite number of members. But, because of the periodicity, 
I had an advantage that I could work out. Then I gradually developed the theory 
of the connection between the elastic bonds … So I worked that out, and then 
discovered by fooling around that I could get it for a principle of energy minimum 
… But anyway, in the meantime I’d found this theorem about the forces, but the 
force on the nucleus is nothing but the electrostatic attraction of all the electrons, 
the distribution of the electrons being determined by the Schrödinger equation. 
Slater found this interesting and unusual, and hadn’t known that. He challenged 
me, and said, ‘How do you explain van der Waals forces that way?’ So I went back 
and I proved that the van der Waals force could also be understood that way. 
Then he said it was worthwhile, I ought to publish it. So I wrote it up. And he said, 
‘Let Conyers Herring look at it’ [Conyers Herring was then a postdoctoral fellow 
under Slater]. He was good at these things. Herring looked at it, and there was a 
long session. He said, ‘Take this out.’ I had the proof that the integral of F times 
HG, where H is the Hamiltonian, was the same as HF star times G, integrated. 
And I proved it with the Schrödinger equation … Herring says to me, ‘Take that 
out, and write instead such and such equals such and such because H is Hermitian 
self-adjoining [i.e., self-adjoint].’ I said, ‘What does that mean?’ He said, ‘That’s 
what it means. It means that equation is true.’ I’m just saying this to show the level 
of what I knew. See, I proved everything by hand — I didn’t go into the general. 
So he took that out, and so on, and then I proved this theorem, and it was in this 
paper” (AIP Oral History Interviews, Richard Feynman – Session II, https://www.
aip.org/history-programs/niels-bohr-library/oral-histories/5020-2).

Mehra gives the following account of the theorem Feynman is referring to. “The 
primary motivation for the thesis appears to stem from the following intuitively 
appealing theorem, which Feynman enunciated and proved:
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‘The force on any nucleus (considered fixed) in any system of nuclei and electrons 
is just the classical electrostatic attraction exerted on the nucleus in question by 
other nuclei and by the electron charge distribution’ (*) …

“Feynman’s theorem (*) opened up a new and more revealing picture of the physical 
mechanism of the van der Waals force. The same may be said of the physical 
mechanism of the covalent or homopolar chemical bond, in which connection 
Feynman’s theorem is held in considerable esteem among the physical chemists. 
In order to understand why this should be so, it is only necessary to observe 
that the older textbooks treating the bond tended to display the bonding effect 
as a somewhat mysterious quantum mechanical concomitant of the exchange 
antisymmetry of the overall wave function and the pairing of electron spins, 
whereas Feynman focused attention solely on the charge distribution engendered 
by the spatial factor of the wave function and the chemically desirable Coulomb 
forces exerted by this charge distribution. 

“Feynman’s theorem (*) is often referred to in the literature as the ‘Hellman-
Feynman theorem.’ This terminology may be inexact, in so far as Hellman [a 
German physical chemist] did not envisage the Feynman force theorem (*)” 
(Mehra, The Beat of a Different Drum, pp. 72-78).

The thesis carried the title ‘Forces and stresses in molecules.’ “Slater made him 
rewrite the first version. He complained that Feynman wrote the way he talked, 
hardly an acceptable style for a scientific paper. Then he advised him to submit a 
shortened version for publication. The Physical Review accepted it, with the title 
shortened as well, to ‘Forces in Molecules’” (Gleick).

“Many years later, in summer 1949, Feynman went to give lectures on quantum 
electrodynamics at the University of Michigan summer school at Ann Arbor. 

There, ‘Ted Berlin, who was in physical chemistry, said, ‘Have you heard all the 
debates about your Feynman-Hellman theorem?’ I said, ‘What theorem?’ He 
said, ‘It’s called the Feynman-Hellman theorem, the force law between molecules.’ 
Everyone was arguing it across the ocean. The Americans were saying I was right 
and the Germans were saying that I had made two mistakes: I left out the kinetic 
energy and something else. But anyway, they thought that things cancelled out 
and I was just lucky. But my proof was really sound, and it wasn’t just a matter of 
luck. There was no mistake’” (Mehra, p. 78).

In the published paper ‘Forces in Molecules,’ Feynman cited no references, but 
he expressed gratitude to Slater and Conyers Herring. The paper has been cited 
almost 2000 times.
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FOUCAULT’S THESIS - PROVING 
THE WAVE THEORY OF LIGHT

FOUCAULT, Jean Bernard Léon. Thèse présentée à la faculté des sciences de Par-
is... Sur les vitesses rélatives de la lumière dans l’air et dans l’eau. Paris: Bachelier, 
1853.

$28,500

4to (282 x 230 mm), pp. [iv], 35, [1], with one large folding engraved plate. Original 
printed wrappers, unopened. Marginal corrections to text on pages 3 and 5 (in the 
author’s hand?). Very rare in such fine condition.

First edition, rare, and an exceptionally fine copy, of Foucault’s doctoral thesis on 
the speed of light, in which he provides a convincing proof for the wave theory 
of light. In the 1840s Foucault undertook a series of optical experiments using 
an apparatus of rotating mirrors to determine the velocity of light. Originally 
developed by Charles Wheatstone to measure the velocity of electricity, the rotating 
mirror apparatus had been proposed as an instrument for the measurement of 
light in 1838 by Dominique-François Arago who failed in his own attempts to 
carry out the experiment. Foucault’s initial work was carried out in conjunction 
with the physicist Armand Hippolyte Louis Fizeau (1819-1896); but a personal 
dispute broke up their partnership in 1847 and the two collaborators became rivals, 
working separately on the same problem using the same technique. Both reached 
the same conclusion, but while Fizeau was the first to obtain, in 1849, a precision 
measurement of the velocity of light, Foucault pre-empted him in announcing, 
on 30 April 1850, that light travels faster in air than in water, a decisive argument 
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in favour of the wave theory of light, which by the mid-nineteenth century had 
become generally accepted. In his thesis Foucault gives a detailed account of his 
experiment, illustrating his apparatus; it was not until 1862 that he was able to 
determine a numerical value for the speed of light, of about 298,000 kilometers per 
second, a figure significantly smaller, and more accurate, than Fizeau’s. Foucault 
is today best known for the pendulum experiments demonstrating the rotation of 
the earth which he performed in 1851. Perhaps he considered these experiments 
to be unsuitable as a thesis topic as the result (the rotation of the earth) was well 
known to everyone, whereas the results of his air-and-water experiments, though 
expected by most scientists, were new. ABPC/RBH list five copies in the last 
40 years: Christie’s 2008, $17,395; Christie’s, Paris 2004, €9000; Christie’s 2004, 
$8,812; Christie’s 1999, $10,350; Christie’s 1998, $7,475.

“The early-to-mid 1800s were a period of intense debate on the particle-versus-
wave nature of light. Although the observation of the Arago spot in 1819 may 
seem to have settled the matter definitively in favor of Fresnel’s wave theory of 
light, various concerns continued to appear to be addressed more satisfactorily by 
Newton’s corpuscular theory …

“In 1834, Charles Wheatstone developed a method of using a rapidly rotating 
mirror to study transient phenomena, and applied this method to measure the 
velocity of electricity in a wire and the duration of an electric spark [‘An Account 
of Some Experiments to Measure the Velocity of Electricity and the Duration 
of Electric Light,’ Philosophical Transactions of the Royal Society of London, 
vol. 124, pp. 583–591]. He communicated to François Arago the idea that his 
method could be adapted to a study of the speed of light. Arago expanded upon 
Wheatstone’s concept in an 1838 publication [‘Sur un système d’expériences 
à l’aide duquel la théorie de l’émission et celle des ondes seront soumises à des 
épreuves décisives,’ Comptes rendus hebdomadaires des séances de l’Académie des 
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sciences, vol. 7, pp. 954-960], emphasizing the possibility that a test of the relative 
speed of light in air versus water could be used to distinguish between the particle 
and wave theories of light” (Wikipedia).

“A comparison of this velocity in air and in water would be a clear experimental 
test between the wave and particle theories of light, since the former required 
light to travel faster in air; the latter, in water” (DSB).

“In 1845, Arago suggested to Fizeau and Foucault that they attempt to measure 
the speed of light. Sometime in 1849, however, it appears that the two had a 
falling out, and they parted ways pursuing separate means of performing this 
experiment. In 1848-49, Fizeau used, not a rotating mirror, but a toothed wheel 
apparatus to perform an absolute measurement of the speed of light in air …

“In 1850 and in 1862, Léon Foucault made improved determinations of the speed 
of light substituting a rotating mirror for Fizeau’s toothed wheel. The apparatus 
involves light from a slit S reflecting off a rotating mirror R, forming an image of 
the slit on the distant stationary mirror M, which is then reflected back to reform 
an image of the original slit. If mirror R is stationary, then the slit image will 
reform at S regardless of the mirror’s tilt. The situation is different, however, if R 
is in rapid rotation. As the rotating mirror R will have moved slightly in the time 
it takes for the light to bounce from R to M and back, the light will be deflected 
away from the original source by a small angle.

“Guided by similar motivations as his former partner, Foucault in 1850 was more 
interested in settling the particle-versus-wave debate than in determining an 
accurate absolute value for the speed of light. Foucault measured the differential 
speed of light through air versus water by inserting a tube filled with water between 
the rotating mirror and the distant mirror. His experimental results, announced 
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shortly before Fizeau announced his results on the same topic, were viewed as 
‘driving the last nail in the coffin’ of Newton’s corpuscle theory of light when it 
showed that light travels more slowly through water than through air. Newton 
had explained refraction as a pull of the medium upon the light, implying an 
increased speed of light in the medium. The corpuscular theory of light went into 
abeyance, completely overshadowed by wave theory. This state of affairs lasted 
until 1905, when Einstein presented heuristic arguments that under various 
circumstances, such as when considering the photoelectric effect, light exhibits 
behaviors indicative of a particle nature.

“In contrast to his 1850 measurement, Foucault’s 1862 measurement was aimed at 
obtaining an accurate absolute value for the speed of light, since his concern was 
to deduce an improved value for the astronomical unit. At the time, Foucault was 
working at the Paris Observatory under Urbain le Verrier. It was le Verrier’s belief, 
based on extensive celestial mechanics calculations, that the consensus value 
for the speed of light was perhaps 4% too high. Technical limitations prevented 
Foucault from separating mirrors R and M by more than about 20 meters. 
Despite this limited path length, Foucault was able to measure the displacement 
of the slit image (less than 1 mm) with considerable accuracy. In addition, unlike 
the case with Fizeau’s experiment (which required gauging the rotation rate 
of an adjustable-speed toothed wheel), he could spin the mirror at a constant, 
chronometrically determined speed. Foucault’s measurement confirmed le 
Verrier’s estimate. His 1862 figure for the speed of light (298000 km/s) was within 
0.6% of the modern value” (Wikipedia).

Jean Bernard Léon Foucault (1819-68) “worked in a laboratory set up in his 
home until, following the award of the Cross of the Legion of Honor in 1851 
(for his pendulum experiment) and the docteur ès sciences physiques in 1853 (for 
his thesis comparing the velocity of light in air and water), he was given a place 

as physicist at the Paris observatory by Napoleon III. Further honors followed: 
the Copley Medal of the Royal Society in 1855, officer of the Legion of Honor 
and member of the Bureau des Longitudes in 1862, and foreign member of the 
Royal Society (1864) and the academies of Berlin and St. Petersburg. Finally, after 
having failed to be elected in 1857, Foucault was chosen in 1865, following the 
death of Clapeyron, a member of the Académie des Sciences” (DSB).

En français dans le texte 270; Norman 820.
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PMM 240 - ONE OF TWELVE COPIES

GALVANI, Luigi. De viribus electricitatis in motu musculari commentarius. Bolo-
gna: Press of the Academy of Sciences, 1791.

$195,000

4to (262 x 206 mm), pp. [1-2], 3-58, with four folding engraved plates. Contempo-
rary marbled wrappers (wrappers rubbed and chipped at extremities, rear wrapper 
with closed tear, internally a few spots in the margins and some light browning and 
soiling).

First edition, incredibly rare offprint, one of 12 copies issued, of this epoch-
making work, one of the most important in the history of electricity. Galvani’s 
paper was published in one of the ‘Opuscula’ of the journal De Bononiensi 
scientiarum et artium instituto atque academia (vol. 7, pp. 363-418); this offprint 
probably precedes the journal printing (see below). It is accompanied by four 
engraved plates, by his friend Jacopo Zambelli, which graphically illustrate 
Galvani’s dissections and electrical apparatus. Along with Harvey’s plate of the 
veins of the arm, they are the most famous of all illustrations in the history of 
biology. Evans summarized Galvani’s paper succinctly as “the description of the 
production of ‘current electricity’ by contact between two different metals and the 
legs of a frog (the latter acting as a galvanometer), which inaugurated the modern 
epoch in electricity.” “Although the existence of electricity had been recognized 
for many centuries, it was not until the eighteenth century, with the invention of 
man-made apparatus for its creation, that the study of electricity became a science. 
That electricity was involved somehow in the function of living tissue had been 
noted in studies of the activity of electric fishes and eels, but it was Luigi Galvani, 
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professor of anatomy in Bologna, who first carried out systematic experiments 
demonstrating that muscular contraction results from an electric current” 
(Grolier, Medicine, p. 183). Alessandro Volta (1745-1827) repeated Galvani’s 
experiments, correctly interpreted the results as being due to contact electricity, 
and was thus led directly to the invention of the ‘Voltaic pile’, the first source 
of a continuous electric current and precursor of the modern electric battery. 
There are two different issues of this offprint. Both have separate pagination 
and register, and in both an ornamental border is added above the beginning of 
the article. The first issue is printed from the standing type of the journal, and 
has a half-title but no title page; the second issue, offered here, has a title but no 
half-title. “In this second issue [offered here] gathering A (eight pages) has been 
reset [and is] distinguished from the first issue by the catch syllables ‘si’, ‘His,’ 
and ‘mi-’ on pp. 3, 5 and 7 respectively” (hagstromerlibrary.ki.se/books/18685). 
It was a copy of this second issue that Galvani sent to Volta, and which led to 
Volta’s great discoveries (this copy is now at the Huntington). OCLC lists copies 
(verified) at the Bodleian, University of British Columbia, Harvard, Huntington, 
University of Oklahoma, and the Muséum national d’Histoire naturelle, Paris; 
there are also copies at the University of Bologna and the Hagströmer Library 
(Stockholm).ABPC/RBH records no copy of the first issue, and only Honeyman’s 
copy of the second (Sotheby’s, 5 November 1979, lot 1428, £15,400 = $35,831 – 
for comparison, Honeyman’s two copies of the 1687 Principia made £7700 and 
£8800). Only two copies of the first issue are known, the Fulton copy at Yale and 
one from the library of the Italian scholar Giaconto Amati offered by Quaritch in 
2005 (Cat. 1332, no. 37) (OCLC also lists a copy at Columbia, which may be the 
Amati copy). A book edition of Galvani’s paper was published several months 
later at Modena (dated 1792), with notes and commentary by Giovanni Aldini, 
Galvani’s nephew and principal apologist, and with Don Bassano Carminati’s 
report of Volta’s repetition of Galvani’s experiments; in the book edition, the 
plates were re-engraved and printed on three sheets instead of four.

GALVANI, Luigi.

“By the end of the eighteenth century the connexion between nervous action and 
electricity had been the subject of investigation for some time. Newton, when 
discussing the properties of aether, had made suggestions that an electric spirit 
might convey sensations to the brain along the nerves and produce muscular 
reactions. Haller also made experiments trying to prove a connexion between 
electrical action and reflexes of the muscles. It was left to Luigi Galvani, professor 
of anatomy at Bologna, in ’On the Effects of Electricity on Muscular Motion’, to 
provide, as he thought, dramatic experiments on what he called ’animal electricity’ 
and afterwards ’galvanism’. Galvani observed in his laboratory that when a nerve 
in a frog’s leg was touched with a scalpel, violent contractions of the muscles 
occurred simultaneous with the sparks discharged from a nearby electrical 
machine. He further discovered that when one metal was placed in contact 
with a frog’s nerve, another with a muscle, and the metals touched, contraction 
of the muscle took place, without needing a spark from an electrical machine. 
As a physiologist, Galvani thought that this action was due to the presence of 
electricity in the animal itself, as in the ’electric eel’ and that the metal wires simply 
served as conductors. He did not realize that he had not discovered just a new 
physiological source of electricity, but a new source of continuous electric flow 
in chemical action. It was Alessandro Volta, a physicist, who proved that animals 
were inessential to ’galvanic’ electricity, and who constructed the first battery to 
cause a current to flow by chemical action” (Printing and the Mind of Man).

“No one who lives in the present age of electrical power needs to be reminded of 
the practical importance for technology of the availability of an electric current. 
Before the time of Galvani, electricity was available only at high potential and 
in short surges of charge, as in spark discharges. But once the electrical battery 
had been invented, the potential could be chosen at will within large ranges, and 
continuous currents at constant amperage were available. The development of the 



battery, with the allied physical principles, marked the beginning of a wholly new 
ear in physics. And in chemistry, the battery made possible the decomposition 
of many compounds and the isolation of new chemical elements, and it led to an 
understanding of the bonding forces that hold together the constituent parts of 
molecules. These great revolutions in physics, chemistry and engineering derived 
from the publication of Galvani’s book – although they were the product of an 
investigation that had as its aim to disprove Galvani’s fundamental postulate of 
animal electricity” (Cohen, p. 29).

“During the 1770’s [Galvani’s] research interests shifted to a considerable extent 
from largely anatomical to more strictly physiological studies, specifically on 
nerves and muscles. In 1772 Galvani read a paper on Hallerian irritability to 
the Istituto delle Scienze, and in 1773 he discussed the muscle movement of 
frogs before the same body. In 1774 he read a paper on the effect of opiates on 
frog nerves. These researches fused in his mind with slightly earlier eighteenth-
century studies, several of them by Italians, on the electrical stimulation of nerves 
and muscles. Picking up where Beccaria, Leopoldo Caldani, Felice Fontana, and 
Tommaso Laghi had recently left off, Galvani began in late 1780 an extensive and 
meticulous series of investigations into the irritable responses elicited by static 
electricity in properly prepared frogs” (DSB).

“The initial observation, described by Galvani in his De viribus electricitatis, 
occurred when a dissected frog lay on a table on which there was an electrical 
machine. Violent contractions of the muscles of the frog’s limb occurred when 
an assistant touched the inner crural nerve with the point of a scalpel; and it was 
observed that the contractions occurred simultaneously with the discharge of a 
spark from the electrical machine, and only if the scalpel were grounded by the 
experimenter touching with a finger the iron nails that fastened the blade to the 
handle – if the experimenter held the bone without touching the nails or blade, 
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so that the blade was insulated, no contractions occurred. What puzzled Galvani 
was the fact that these contractions occurred even if the frog was completely 
insulated from the machine and at some distance from it. He did not know that 
the insulated frog was most likely charged by induction, even though insulated 
from the machine, and that if the nerve were grounded when the machine was 
discharged, then the dissected frog would be discharged through the scalpel and 
experimenter, and that the sudden change of potential at the point where the 
scalpel was in contact with the nerve would produce a muscle contraction in no 
way dissimilar to the contractions excited electrically in experiments on living 
and dead animals for at least thirty years past …

“Galvani was stimulated by his observation and bewildered. But, like any good 
experimenter, he studied the puzzling phenomenon by varying the parameters. 
Thus, he changed over from using the charge produced by an electrical machine 
to the charges naturally produced in thunder-clouds. He found that his frog 
preparations, hanging by copper hooks from an iron railing, contracted not 
only during thunder-storms but in calm weather too. Impatient at the long wait 
between contractions in fair weather, he tells us that he began to scrape and press 
the copper hook (which was fastened to the backbone of the frog) against the iron 
railing and discovered that contractions were frequently produced, apparently in 
independence of variations in the weather. Similar results were produced indoors 
when the frog was placed on an iron plate and the brass hook was placed against 
the plate. This last experiment was varied in different ways, being performed in 
different places and at different times of the day, and using different metals. The 
major effects noticed were a variation in the intensity of the contractions with 
different metals and a complete absence of of contractions when non-conductors 
such as glass, gum, resin, stone or dry wood were employed. These results led 
him to believe that an electric fluid must be in the animal itself and he likened the 
whole process of a fine nervous fluid flowing from the nerves into the muscles to 

the passage of electricity in the discharge of a Leyden jar.

“The remainder of the book is an exploration of the action of this postulated animal 
electricity, or animal nervous electric fluid, in producing muscular contractions 
in cold-blooded and warm-blooded animals. The complete theory, developed at 
length in the book, has been summarised by [Emil] du Bois-Reymond as follows:

“1. Animals have an electricity peculiar to themselves, which is called Animal 
Electricity.

“2. The organs to which this animal electricity has the greatest affinity, and 
in which it is distributed, are the nerves, and the most important organ of its 
secretion is the brain.

“3. The inner substance of the nerve is specialized for conducting electricity, while 
the outer oily layer prevents its dispersal, and permits its accumulation.

“4. The receivers of animal electricity are the muscles, and they are like a Leyden 
jar, negative on the outside and positive on the inside.

“5. The mechanism of motion consists in the discharge of the muscular fluid from 
the inside of the muscle via the nerve to the outside, and this discharge of the 
muscular Leyden jar furnishes an electrical stimulus to the irritable muscle fibres, 
which therefore contract.”

“Such were the bases of Galvanism” (Cohen, pp. 27-8).

“Galvani’s celebrated treatise was issued in 1791, but just when it appeared 
is not clear. The imprimatur at the end of the volume is dated 27 March 1791 
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[this refers to the journal appearance]; but nearly a year elapsed from that date 
before the first repercussions aroused by the paper began to be heard. Galvani 
was supplied with a few offprints, one of which was forwarded to Volta and bears 
the inscription “Ex dono auctoris.” One would like to know the general tenor of 
Volta’s acknowledgement to the author, but in lieu of that one must be satisfied 
with the comments of Volta’s colleague, the professor of medicine at Pavia, Don 
Bassano Carminati, who under the date of 3 April 1792 acknowledged the receipt 
presumably of another copy which a mutual friend, the Abbé Felice Fontana, had 
brought him. 

“In this acknowledgement Carminati tells of the interest aroused by the paper 
among his colleagues, particularly on the part of Spallanzani and of Volta who 
had ventured to suggest other interpretations than animal electricity to explain 
the convulsive movements. To this Galvani replied at length on 8 May, citing 
further observations – one on a human arm and leg amputated that very day – 
which appeared to favour his original interpretation of phenomena, “that served 
to bring somewhat nearer solution the most important problem in physiology – 
what is the physical cause of voluntary movement.

“Volta’s first public reaction to Galvani’s experiments was given in an address on 5 
May 1792 at the Aula of the University of Pavia on the occasion of a “promotion” 
ceremony. Cameron Walker has pointed out that Volta did not take vigorous 
exception to Galvani’s work at this time but merely to his conclusions concerning 
animal electricity. Volta was prepared to suppose that the electricity might 
possibly come from an inherent animal electricity but he added, “I want more 
convincing proofs to overcome my lack of faith with regard to animal electricity.” 
Cameron Walker adds that this lack of faith did not refer to Galvani’s experiments 
as such but only to the inference that Galvani had thus proved the existence of 
animal electricity. Various other passages in Volta’s first memoir indicate that he 
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was most cordial to Galvani and full of admiration for his work. It is also clear 
from internal evidence that on 5 May 1791 he had done little more than digest the 
contents of Galvani’s treatise and had not yet attempted to repeat his experiments, 
for he says: “The treatise which appeared a few months ago concerning the action 
of electricity on the movement of muscles, written by Signor A. Galvani, member 
of the Institute of Bologna and Professor of the University of that place, who has 
already distinguished himself by other anatomical and physiological discoveries, 
contains one of those great and brilliant discoveries which deserves to mark a new 
era in the annals of physics and medicine.”

“To be more specific, Volta believed that the convulsive movements described by 
Galvani were due to electric currents generated by friction – in short, “frictional” 
electricity rather than “animal” electricity …

“A rejoinder to Volta’s discourse soon came from the youthful Aldini, who must 
assuredly have received his uncle’s permission to reply; for he issued from a Mantua 
press under an imprimatur dated 28 July 1792 a reprint of De viribus electricitatis 
[the offered work] together with the Galvani-Carminati correspondence, to which 
is prefixed a 26-page commentary by himself under the title De animalis electricae 
theoriae ortu atque incrementis.

“From that time on, with but one exception, it is no longer from Galvani that the 
public hears in defence of animal electricity, but chiefly from the irrepressible 
Aldini, to whom, rather than to Galvani, Volta addresses some of his published 
correspondence. In 1793 and again in 1794 Aldini read before the Institute of 
Bologna a dissertation on the subject, the two having been published together 
in the latter year. These papers, translated into English, were reprinted in 1803 at 
which time Aldini subjoined three pages of “Conclusions” which do not happen 
to appear in the originals” (Cohen, pp. 159-160).

“The large number of publications devoted by Volta to Galvanism are an 
indication of the fascination of the subject. Two letters to Tiberius Cavallo in 
England, written in the fall of 1792, read at a meeting of the Royal Society in 
1793, and published in the Philosophical Transactions, presented an account of 
Galvani’s discoveries together with Volta’s own experiments and observations. 
Although Volta indicates in this letter a belief in animal electricity … Volta also 
indicated that the stimulus in Galvani’s experiments was the juncture of two 
different metals by a moist body. Without completely discarding the possibility 
of an animal electricity, Volta made it plain that “metals used in the experiments, 
being applied to the moist bodies of animals, can by themselves, and by their 
proper virtue, excite and dislodge the electric fluid from its state of rest, so 
that the organs of the animal act only passively.” By the end of 1793 Volta had 
altogether rejected the existence of animal electricity and had begun to work out 
his own theory … Finally, one year after Galvani’s death, Volta hit upon a device 
for making the feeble Galvanic effect stronger. Volta showed that if a number 
of pairs of discs, one of copper and the other of zinc, were placed in a line, each 
pair separated from the next by a moistened cardboard disc, a greatly increased 
effect would be produced. This “pile,” as he called it, could even produce a shock 
if an experimenter simultaneously touched the copper disc at one end of the pile 
with one hand and the zinc disc at the other end of the pile with the other hand. 
This effect could be produced again and again, so that the instrument was like 
a Leyden jar with powers of restoring its charge after each discharge, with “an 
inexhaustible charge, a perpetual action or impulsion on the electric fluid” … So 
were the battery and the continuous current discovered” (Cohen, pp. 30-33).

“In retrospect, Galvani and Volta are both seen to have been partly right and 
partly wrong. Galvani was correct in attributing muscular contractions to an 
electrical stimulus but wrong in identifying it as an “animal electricity.” Volta 
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correctly denied the existence of an “animal electricity” but was wrong in 
implying that every electrophysiological effect requires two different metals as 
sources of current. Galvani, shrinking from the controversy over his discovery, 
continued his work as teacher, obstetrician, and surgeon, treating both wealthy 
and needy without regard to fee. In 1794 he offered a defense of his position in 
an anonymous book, Dell’uso e dell’attività dell’arco conduttore nella contrazione 
dei muscoli (“On the Use and Activity of the Conductive Arch in the Contraction 
of Muscles”), the supplement of which described muscular contraction without 
the need of any metal. He caused a muscle to contract by touching the exposed 
muscle of one frog with a nerve of another and thus established for the first time 
that bioelectric forces exist within living tissue” (Britannica).

The journal volume containing Galvani’s paper has the same imprint (and date) 
as the present offprint, but “just when it appeared is not clear” (Cohen, p. 159). 
This question has now been answered by Walter Bernardi. “Galvani published 
his discovery in a 53-page [sic] Latin paper, which was included in the seventh 
volume of the Commentarii of the Bologna Academy of Sciences. When was 
Galvani’s Commentarius printed? The publishing date of his masterpiece, which 
is also the date of the birth of electrodynamics and electrophysiology, has always 
been a mystery to historians. Now, the examination of Sebastiano Canterzani’s 
manuscript correspondence in the University Library of Bologna allows us to solve 
the problem. [Canterzani (1734-1818) was secretary of the Bologna Academy of 
Sciences from 1766 until 1796.] The seventh volume of the Commentarii was dated 
1791 and the imprimatur had been awarded on March 27, but it was published at 
the beginning of 1792, perhaps on January 2 or 3” (Bernardi, p. 102). “The delay 
in publication was a typical feature of the Commentarii, which was the official 
publication of the Bologna Institute of Sciences that collected the research work 
of its members. For this reason and also for its relatively small circulation, the 
Commentarii was not a very effective means of scientific communication. Galvani 
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thus decided to print a few copies of De viribus separately, probably in 1791, and 
he sent these to various scientists; one of them reached Volta in Paris, in March 
1792” (Piccolini & Bresadola, pp. 143-144). The long delay in printing this volume 
of the Commentarii explains why, despite the profound interest eventually excited 
by Galvani’s discoveries, there was little reaction until well into 1792, and no 
definitely dated reaction earlier than 3 April 1792, when Carminati received his 
copy of the offprint. As Fulton & Cushing have noted (p. 258), it was Carminati’s 
letter of acknowledgement to Galvani that “first drew the attention of the learned 
world to Galvani’s studies, and thus inaugurated the controversy with Volta which 
immediately followed.”

Dibner, Heralds of Science 59; Evans 34; Fulton and Stanton, Galvani 4; Garrison-
Morton 593; Grolier, One Hundred Books Famous in Medicine 50; Horblit, One 
Hundred Books Famous in Science 37a; Norman 869; Osler 1243; Printing and the 
Mind of Man 240; Waller 11346; Wellcome III, p. 86; Wheeler Gift 575. Bernardi, 
‘The Controversy on Animal Electricity in Eighteenth-Century Italy: Galvani, 
Volta and Others,’ in Nova Voltiana. Studies on Volta and His Times, edited 
by F. Bevilacqua and L. Fragonese, Vol. 1, pp. 101-114; De Andrade Martins, 
‘Romagnosi and Volta’s Pile: Early Difficulties in the Interpretation of Voltaic 
Electricity,’ in ibid., Vol. 3, pp. 81-102. Fulton & Cushing, ‘A Bibliographical 
Study of the Galvani and the Aldini Writings on Animal Electricity,’ Annals of 
Science, Vol. 1 (1936), pp. 239-68 with 9 plates; Galvani, Commentary of the Effects 
of Electricity on Muscular Motion. Translated into English by Margaret Glover 
Foley, with Notes and a Critical Introduction by I. Bernard Cohen. Together with 
a Facsimile of Galvani’s De Viribus . . . and a Bibliography of the Editions and 
Translations of Galvani’s Book prepared by John Farquhar Fulton and Madeline 
E. Stanton (1953). Piccolino & Bresadola, Shocking Frogs: Galvani, Volta, and the 
Electric Origins of Neuroscience, Oxford, 2013.
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DIBNER 177 - THE BEGINNINGS OF 
VECTOR ANALYSIS

GIBBS, Josiah Willard. Elements of Vector Analysis. [Offered with:] Autograph 
letter from Gibbs to John Monroe Van Vleck. New Haven: Tuttle, Morehouse & 
Taylor, 1881.

$19,500

8vo (245 x153 mm), pp 36. Stitched as issued (with original stitching), upper inner 
corner of final leaf torn away (no text loss), and tear to second final leaf (again not 
effecting the text).

First edition, first issue (see below), of this extremely rare pamphlet which “marks 
the beginning of modern vector analysis” (Crowe, p. 150). “Nearly all branches 
of classical physics and many areas of modern physics are now presented in the 
language of vectors, and the benefits derived thereby are many. Vector analysis 
has likewise proved a valuable aid for many problems in engineering, astronomy 
and geometry” (ibid. p. v). The genesis of the present work was described in 
Gibbs’s own words in an 1888 letter to Victor Schlegel: “My first acquaintance 
with quaternions was in reading Maxwell’s E & M [i.e. Treatise on Electricity and 
Magnetism, 1873] where quaternion notations are considerably used. I became 
convinced that to master those subjects, it was necessary for me to commence by 
mastering those methods. At the same time I saw, that although the methods were 
called quaternionic the idea of the quaternion was quite foreign to the subject. In 
regard to the product of vectors, I saw that there were two important functions 
(or products) called the vector part & the scalar part of the product, but that the 
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union of the two to form what was called the (whole) product did not advance 
the theory as an instrument of geom[etric] investigation. Again with respect 
to the operator  as applied to a vector I saw that the vector part & the scalar 
part of the result represented important operations, but their union (generally 
to be separated afterwards) did not seem a valuable idea … I therefore began 
to work out ab initio, the algebra of the two kinds of multiplication, the three 
differential operations  applied to a scalar, & the two operations to a vector 
… This I ultimately printed but never published, although I distributed a good 
many copies among such persons as I though might possibly take an interest in 
it” (ibid. pp. 152-3). This is the first issue; a second issue, with two additional 
chapters, was published in 1884. Both issues of Gibbs’s pamphlet are extremely 
rare in commerce. We have been unable to locate any copy of this first issue in 
auction records, and only two of the second issue: the Horblit copy (Christie’s, 16 
February 1994) and the Richard Green copy (Christie’s, 17 June 2008).

“In the year 1844 two remarkable events occurred, the publication by [William 
Rowan] Hamilton of his discovery of quaternions, and the publication by 
[Hermann Günther] Grassmann of his ‘Ausdehnungslehre.’ With the advantage 
of hindsight we can see that Grassmann’s was the greater contribution to 
mathematics, containing the germ of many of the concepts of modern algebra, 
and including vector analysis as a special case” (Dyson). “During the 1880’s 
Gibbs seems to have concentrated on optics and particularly on Maxwell’s 
electromagnetic theory of light … Gibbs’s reading Maxwell’s Treatise on Electricity 
and Magnetism led him to a study of quaternions, since Maxwell had used the 
quaternion notation to a limited extent in that work. Gibbs decided, however, 
that quaternions did not really provide the mathematical language appropriate 
for theoretical physics, and he worked out a simpler and more straightforward 
vector analysis” (DSB). From Schlegel’s letter, we learn that “Gibbs commenced 
his search for a vector analysis ‘with some knowledge of Hamilton’s methods’ 
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and ended up with methods that were ‘nearly those of Hamilton’ …  Gibbs also 
stated that he was not ‘conscious that Grassmann exerted any particular influence 
on my V-A.’ This is to be expected since Gibbs had begun searching for a new 
vector system ‘long before my acquaintance with Grassmann.’ When (1877 or 
later) Gibbs finally began to read Grassmann, he found a kindred spirit. Although 
Gibbs admitted he had never been able to read through either of Grassmann’s 
books, he did recognize Grassmann’s priority and warmly praised his ideas on 
numerous occasions” (Crowe, pp. 153-4).

“In 1879 Gibbs gave a course in vector analysis with applications to electricity 
and magnetism, and in 1881 he arranged for the private printing of the first half 
of his Elements of Vector Analysis; the second half appeared in 1884. In an effort 
to make his system known, Gibbs sent out copies of this work to more than 130 
scientists and mathematicians. Many of the leading scientists of the day received 
copies, for example, Michelson, Newcomb, J. J. Thomson, Rayleigh, FitzGerald, 
Stokes, Kelvin, Cayley, Tait, Sylvester, G. H. Darwin, Heaviside, Helmholtz, 
Clausius, Kirchhoff, Lorentz, Weber, Felix Klein, and Schlegel. Though the work 
was not given the advertisement that a regular publication would have had, such 
a selective distribution must have aided in making it known.

“Some idea of the form of Gibbs’ Elements of Vector Analysis may be obtained 
from Gibbs’ introductory paragraph: ‘The fundamental principles of the following 
analysis are such as are familiar under a slightly different form to students of 
quaternions. The manner in which the subject is developed is somewhat different 
from that followed in treatises on quaternions, since the object of the writer does 
not require any use of the conception of the quaternion, being simply to give 
a suitable notation for those relations between vectors, or between vectors and 
scalars, which seem most important, and which lend themselves most readily to 
analytical transformations, and to explain some of these transformations. As a 



precedent for such a departure from quaternionic usage, Clifford’s Kinematic may 
be cited. In this connection, the name of Grassmann may also be mentioned, to 
whose system the following method attaches itself in some respects more closely 
than to that of Hamilton.’ 

“Although Gibbs mentioned only Clifford and Grassmann in the introductory 
paragraph, the previously cited letter makes it clear that his chief debt was not to 
either Clifford or Grassmann but to the quaternionists. In the discussion of Gibbs’ 
book this point will be illustrated; specifically it will be suggested that Gibbs was 
strongly influenced by the content and form of presentation found in the second 
edition of Tait’s Treatise on Quaternions.

“Chapter I, ‘Concerning the Algebra of Vectors,’ began with such definitions 
as ‘vector’, ‘scalar,’ and ‘vector analysis’. In much of the symbolism introduced, 
Gibbs followed the quaternion traditions: for example, Gibbs represented vectors 
by Greek eletters, their components by means of i, j, and k … In dealing with 
vector products Gibbs introduced the ‘direct product,’ written α.β, and the ‘skew 
product,’ written α x β. These are the now-current scalar (dot) and vector (cross) 
products … Chapter I concluded with a treatment of methods for solving vectorial 
equations, and chapter II was entitled ‘Concerning the Differential and Integral 
Calculus of Vectors.’ Herein Gibbs introduced the operator , proved the related 
transformation theorems, and gave an extended treatment of the mathematics of 
potential theory”. The part of Gibbs’ booklet printed in 1881 terminated near the 
end of chapter II; the remainder was printed in 1884.

The present first issue terminated at the end of Chapter II. It was issued without a 
separate title page. In 1884 a second issue appeared, with a variant title “Elements 
of vector analysis, arranged for the use of students in physics”. To the second 
issue was added a further 47 pages, comprising Chapters III and IV, which dealt 
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with linear vector functions, or “dyads” in Gibbs’s terminology. (See the Harvard 
library catalogue for comments on the differences between the two issues.) Gibbs’s 
version of the vector analysis was not formally published until 1901, when one of 
his students, Edwin B. Wilson, prepared a textbook based on Gibbs’s lectures. 

“Josiah Willard Gibbs was born in 1839: his father was at that time a professor of 
sacred literature at Yale University. Gibbs graduated from Yale in 1858, after he 
had compiled a distinguished record as a student. His training in mathematics was 
good, mainly because of the presence of H. A. Newton on the faculty. Immediately 
after graduation he enrolled for advanced work in engineering and attained in 
1863 the first doctorate in engineering given in the United States. After remaining 
at Yale as tutor until 1866, Gibbs journeyed to Europe for three years of study 
divided between Paris, Berlin, and Heidelberg. Not a great deal of information 
is preserved concerning his areas of concentration during these years, but it is 
clear that his main interests were theoretical science and mathematics rather than 
applied science. It is known that at this time he became acquainted with Möbius’ 
work in geometry, but probably not with the systems of Grassmann or Hamilton. 
Gibbs returned to New Haven in 1869 and two years later was made professor of 
mathematical physics at Yale, a position he held until his death.

“His main scientific interests in his first year of teaching after his return seem 
to have been mechanics and optics. His interest in thermodynamics increased 
at this time, and his research in this area led to the publication of three papers, 
the last being his now classic ‘On the Equilibrium of Heterogeneous Substances,’ 
published in 1876 and 1878 in volume III of the Transactions of the Connecticut 
Academy. This work of over three hundred pages was of immense importance. 
When scientists finally realized its scope and significance, they praised it as one 
of the greatest contributions of the century” (ibid., p. 151).
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The letter to John Monroe Van Vleck, which accompanied a copy of the pamphlet, 
describes the additions made to the second issue as follows: 

“Apropos of the subject on wh[ich] we were talking last night, I take the liberty of 
sending you some sheets which I have had printed for a synopsis of my lectures. 
Although very incomplete (especially wanting a chapter on linear functions) this 
synopsis may illuminate in a general way how, as it seems to me, this subject 
might [and] should be developed, if it is pursued as an aid to geometrical [and] 
physical studies [and] not as a pure jeu d’esprit.” 

J. M. Van Vleck was professor of mathematics and astronomy at Wesleyan 
University in Connecticut from 1853 to 1904 (Gibbs spent most of his academic 
career at nearby New Haven). He was the grandfather of John Hasbrouck Van 
Vleck (1899-1980), the most important American theoretical physicist between 
Gibbs and the postwar generation, and winner of the Nobel Prize for Physics in 
1977.

Dibner 117; DSB V: 391; Crowe, A History of Vector Analysis, 1967. 
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FOUNDATION OF THE SPACE AGE - 
PRESENTATION COPIES

GODDARD, Robert Hutchins. A Method of Reaching Extreme Altitudes [with:] 
Liquid Propellant Rocket Development. Washington DC: Smithsonian Institution, 
1919 & 1936.

$39,500

8vo (245 x 165 mm), pp. [4], 69, with 25 photographic images on 10 plates. Original 
brown printed wrappers (spine rubbed, slightly chipped at extremities). [With:] 8vo, 
pp. [2], 10, with 11 pages of photographic plates. Original brown printed wrappers 
(very slight wear to extremities, light vertical crease), uncut, very good copies.

First edition, presentation copies in the original printed wrappers, inscribed 
by Goddard, and with a highly important association, of the most influential 
early works on rocketry, which provided the foundation for the modern space 
age. “Having explored the mathematical practicality of rocketry since 1906 and 
the experimental workability of reaction engines in laboratory vacuum tests 
since 1912, Goddard began to accumulate ideas for probing beyond the earth’s 
stratosphere. His first two patents in 1914, for a liquid-fuel gun rocket and a 
multistage step rocket, led to some modest recognition and financial support 
from the Smithsonian Institution … The publication in 1919 of his seminal paper 
‘A Method of Reaching Extreme Altitudes’ gave Goddard distorted publicity 
because he had suggested that jet propulsion could be used to attain escape 
velocity and that this theory could be proved by crashing a flash-powder missile 
on the moon. Sensitive to criticism of his moon-rocket idea, he worked quietly 
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and steadily toward the perfection of his rocket technology and techniques 
… Among Goddard’s successful innovations were fuel-injections systems, 
regenerative cooling of combustion chambers, gyroscopic stabilization and 
control, instrumented payloads and recovery systems, guidance vanes in the 
exhaust plume, gimbaled and clustered engines, and aluminium fuel and oxidizer 
pumps” (DSB). The 1919 paper described work on rockets that were fed with a 
continuous stream of solid charges, but this method eventually proved unfeasible, 
and in 1922 Goddard went back to an earlier idea of his, proposed independently 
by Oberth in Germany and also noted by Tsiolkovsky in Russia: a liquid-fuel 
rocket. Goddard successfully launched the first such rocket on March 16, 1926, 
ushering in an era of space flight and innovation. The results of Goddard’s research 
into liquid-fuel rockets are presented in the 1936 paper offered here. “Years after 
his death, at the dawn of the Space Age, Goddard came to be recognized as one 
of the founding fathers of modern rocketry, along with Robert Esnault-Pelterie, 
Konstantin Tsiolkovsky, and Hermann Oberth. He not only recognized the 
potential of rockets for atmospheric research, ballistic missiles and space travel 
but was the first to scientifically study, design and construct the rockets needed 
to implement those ideas. NASA’s Goddard Space Flight Center was named in 
Goddard’s honor in 1959” (Wikipedia). We have located only one presentation 
copy of the first work in auction records (Christie’s, 13 December 2006, lot 145, 
£4200), a copy rebound in modern wrappers and with later institutional stamps; 
and one of the second (RR Auction, 2014, $4773). 

Provenance: “With the author’s compliments” written in ink in Goddard’s hand at 
lower right corner of front wrapper of first work, “With the author’s compliments 
// R. H. Goddard” written in ink in Goddard’s hand at upper right corner of front 
wrapper of second work, presented to; Clarence Hickman (signed by him in ink 
at top of front wrapper and on first page of text of first work).
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Goddard (1882-1945) became interested in space when he read H. G. Wells’ 
science fiction classic The War of the Worlds at 16 years old. He received his B.S. 
degree in physics from Worcester Polytechnic in 1908, and after serving there for 
a year as an instructor, he began his graduate studies at Clark University in the 
fall of 1909. Goddard received his M.A. degree in physics from Clark in 1910, 
and then stayed on to complete his Ph.D. in physics in 1911. After another year at 
Clark as an honorary fellow in physics, in 1912 he accepted a research fellowship 
at Princeton University.

By this time he had in his spare time developed the mathematics which allowed 
him to calculate the position and velocity of a rocket in vertical flight, given the 
weight of the rocket and weight of the propellant and the velocity (with respect to 
the rocket frame) of the exhaust gases. In effect he had independently developed 
the Tsiolkovsky rocket equation published a decade earlier in Russia. In early 1913, 
Goddard became seriously ill with tuberculosis and had to leave his position at 
Princeton. He then returned to Worcester, where he began a prolonged process of 
recovery at home. It was during this period of recuperation that Goddard began 
to produce some of his most important work. By the fall of 1914, Goddard’s health 
had improved, and he accepted a part-time position as an instructor and research 
fellow at Clark University. His position at Clark allowed him to further his 
rocketry research, but by 1916 the cost of Goddard’s rocket research had become 
too great for his modest teaching salary to bear. He began to solicit potential 
sponsors for financial assistance, beginning with the Smithsonian Institution. 
The Smithsonian was interested and asked Goddard to elaborate upon his initial 
inquiry. Goddard responded with a detailed manuscript he had already prepared, 
entitled A Method of Reaching Extreme Altitudes. Two years later, Goddard 
arranged for the Smithsonian to publish this manuscript, updated with footnotes.

“In late 1919, the Smithsonian published Goddard’s groundbreaking work, 



A Method of Reaching Extreme Altitudes. The report describes Goddard’s 
mathematical theories of rocket flight, his experiments with solid-fuel rockets, 
and the possibilities he saw of exploring Earth’s atmosphere and beyond. Along 
with Konstantin Tsiolkovsky’s earlier work, The Exploration of Cosmic Space by 
Means of Reaction Devices, which was not widely disseminated outside Russia, 
Goddard’s report is regarded as one of the pioneering works of the science of 
rocketry, and 1750 copies were distributed worldwide. Goddard also sent a 
copy to individuals who requested one, until his personal supply was exhausted. 
Smithsonian aerospace historian Frank Winter said that this paper was ‘one of 
the key catalysts behind the international rocket movement of the 1920s and 30s.’

“Goddard described extensive experiments with solid-fuel rocket engines burning 
high-grade nitrocellulose smokeless powder. A critical breakthrough was the use 
of the steam turbine nozzle invented by the Swedish inventor Gustaf de Laval. The 
de Laval nozzle allows the most efficient conversion of the energy of hot gases into 
forward motion. By means of this nozzle, Goddard increased the efficiency of his 
rocket engines from two percent to 64 percent and obtained supersonic exhaust 
velocities of over Mach 7. 

“Though most of this work dealt with the theoretical and experimental relations 
between propellant, rocket mass, thrust, and velocity, a final section, entitled 
‘Calculation of minimum mass required to raise one pound to an ‘infinite’ altitude,’ 
discussed the possible uses of rockets, not only to reach the upper atmosphere but 
to escape from Earth’s gravitation altogether. He determined, using an approximate 
method to solve his differential equations, that a rocket with an effective 
exhaust velocity of 7000 feet per second and an initial weight of 602 pounds 
would be able to send a one-pound payload to an infinite height” (Wikipedia). 

“Toward the end of [A Method of Reaching Extreme Altitudes], Goddard outlined 
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the possibility of a rocket reaching the moon and exploding a load of flash powder 
there to mark its arrival. The bulk of his scientific report to the Smithsonian was a 
dry explanation of how he used the $5,000 grant in his research. The press picked 
up Goddard’s scientific proposal about a rocket flight to the moon, however, and 
created a journalistic controversy concerning the feasibility of such a thing. The 
resulting ridicule created in Goddard firm convictions about the nature of the 
press corps, which he held for the rest of his life.

“Goddard’s greatest engineering contributions were made during his work in 
the 1920s and 1930s. He received a total of $10,000 from the Smithsonian by 
1927, and through the personal efforts of Charles A. Lindbergh, he subsequently 
received financial support from the Daniel and Florence Guggenheim Foundation. 
Progress on all of his work, titled ‘Liquid Propellant Rocket Development,’ was 
published by the Smithsonian in 1936.

“Goddard’s work largely anticipated in technical detail the later German V-2 
missiles, including gyroscopic control, steering by means of vanes in the jet stream 
of the rocket motor, gimbal-steering, power-driven fuel pumps and other devices. 
His rocket flight in 1929 carried the first scientific payload, a barometer, and a 
camera. Goddard developed and demonstrated the basic idea of the ‘bazooka’ two 
days before the Armistice in 1918 at the Aberdeen Proving Ground in Maryland. 
His launching platform was a music rack. In World War II, Goddard again offered 
his services and was assigned by the U.S. Navy to the development of practical jet 
assisted take-off and liquid propellant rocket motors capable of variable thrust. In 
both areas, he was successful...

“Goddard was the first scientist who not only realized the potentialities of missiles 
and space flight but also contributed directly in bringing them to practical 
realization. Goddard had a rare talent in both creative science and practical 

engineering. The dedicated labors of this modest man went largely unrecognized 
in the United States until the dawn of the Space Age.  High honors and wide 
acclaim, belated but richly deserved, now come to the name of Robert H. Goddard” 
(https://www.nasa.gov/centers/goddard/about/history/dr_goddard.html).

Both pamphlets were presented by Goddard to Clarence N. Hickman (1889-
1981), an early associate and long-time friend of Goddard. They met shortly after 
Hickman began graduate studies at Clark University in Worcester, Massachusetts 
in 1917. Goddard, who was then head of the physics department at Clark, had 
heard about Hickman’s reputation for mechanical ability and asked him about 
a problem he was having with multiple-charge rockets. Hickman solved the 
problem and Goddard suggested that Hickman continue working on rocket 
development with him once Hickman completed his degree. After Goddard 
moved from Worcester to Pasadena’s Mount Wilson Observatory in 1918, 
Hickman went with him and the two continued their work together. It was there 
that they successfully developed the ‘Rocket-Powered Recoilless Weapon’, later 
known as the bazooka. Although further work on the bazooka was suspended 
after the war ended, the two men continued to work together at Clark’s Industrial 
Research Laboratory during the early 1920s. Hickman joined Bell Laboratories in 
1930, and there developed magnetic recording on metal tape. In 1940, Hickman 
headed Section H of the National Defense Research Committee, an organization 
created “to coordinate, supervise, and conduct scientific research on the problems 
underlying the development, production, and use of mechanisms and devices of 
warfare”, and appointed Goddard as a consultant. But Goddard’s work was rejected 
by the US authorities, a decision they came to regret as it eventually fell into the 
hands of Werner von Braun, who used it to develop the V-1 and V-2 rockets 
which the Germans used to devastating effect in the latter part of the War. After 
the War ended, Hickman returned to Bell Labs, retiring in 1950. Parkinson p. 489.
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‘THE GREATEST PAPER IN 
MATHEMATICAL ECONOMICS THAT 
WAS EVER WRITTEN’

GÖDEL, Kurt, VON NEUMANN, John (& others). Thirteen papers by Gödel 
on the logical foundations of mathematics, together with von Neumann’s historic 
paper on general economic equilibrium, all first editions, in Ergebnisse eines math-
ematischen Kolloquiums, unter Mitwirkung von Kurt Gödel und Georg Nöbeling. 
Herausgegeben von Karl Menger. Heft 1-8. Leipzig & Berlin: B.G. Teubner & F. 
Deuticke, 1931-1937.

$48,500

Eight separate issues, 8vo (232 x 152 mm), pp. 31, [1, blank]; 38, [2, blank]; 26; 45, 
[1, blank]; 42; 47, [1, blank]; 61, [1, blank]; 84. Original printed wrappers. A little 
rusting to staples of the first issue, otherwise a very fine set.

First editions, and a fine complete set in the original printed wrappers, of all eight 
issues of these proceedings to which Gödel contributed thirteen important papers 
and remarks on the foundations of logic and mathematics. The last three issues 
are particularly rare, and are important for containing several seminal papers on 
mathematical economics, notably von Neumann’s “A model of general economic 
equilibrium” in Heft 8, which “E. Roy Weintraub, current President of the 
History of Economics Society, described as ‘the greatest paper in mathematical 
economics that was ever written’” (Cabral, p. 126). “In stark contrast to the short 
eight years of its existence, the colloquium that met in Vienna from 1928 to 
1936 had a long lasting influence on economic theory” (Debreu – winner of the 
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1983 Nobel Prize in Economics). The most important of the Gödel papers are 
perhaps ‘Über Vollständigkeit und Widerspruchsfreiheit’ (‘On completeness and 
consistency’) in Heft 3 and ‘Zur intuitionistischen Arithmetik und Zahlentheorie’ 
(‘On intuitionist arithmetic and number theory’) in Heft 4. Based on the lecture 
at the Colloquium required for his Habilitation, in the first paper Gödel presented 
a different approach to his epochal incompleteness theorem, published just a few 
months earlier in Monatshefte für Mathematik: instead of Russell’s theory of types, 
in the present version he used Peano’s axioms for the natural numbers; this soon 
became the standard approach. In the second paper, Gödel proved that intuitionist 
mathematics is no more certain, or more consistent, than ordinary mathematics. 
“By invitation, in October 1929 Gödel began attending Menger’s mathematics 
colloquium, which was modelled on the Vienna Circle. There in May 1930 he 
presented his dissertation results, which he had discussed with Alfred Tarski three 
months earlier, during the latter’s visit to Vienna. From 1932 to 1936 he published 
numerous short articles in the proceedings of that colloquium (including his only 
collaborative work) and was co-editor of seven of its volumes. Gödel attended 
the colloquium quite regularly and participated actively in many discussions, 
confining his comments to brief remarks that were always stated with the greatest 
precision” (DSB XVII: 350). Von Neumann also attended the colloquium in the 
early years. Although subsets of this collection occasionally appear on the market, 
complete sets of all eight issues are very rare.

Working under Hans Hahn, Karl Menger (1902-85) received his PhD from the 
University of Vienna in 1924 and accepted a professorship there three years later. 
“During the academic year 1928/29, several students asked Menger to direct a 
Mathematical Colloquium, somewhat analogous to the philosophically motivated 
Vienna Circle ... This Colloquium, which met on alternate Tuesdays during 
semester time, had a flexible agenda including lectures by members or invited 
guests, reports on recent publications and discussion of unsolved problems. 
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Menger kept a record of these meetings, which he published, regularly in 
November of the following year, under the title ‘Ergebnisse eines mathematischen 
Kolloquiums’ …

“Gödel had entered the university in 1924, and Menger first met him as the 
youngest and most silent member of the Vienna Circle. In 1928, Gödel started 
working on Hilbert’s program for the foundation of mathematics, and in 1929 
he succeeded in solving the first of four problems of Hilbert, proving in his PhD 
thesis (under Hans Hahn) that first order logic is complete: Any valid formula 
could be derived from the axioms.

“At that time Menger, who was greatly impressed by the Warsaw mathematicians, 
had invited Alfred Tarski to deliver three lectures at the Colloquium. Gödel, who 
had asked Menger to arrange a meeting with Tarski, soon took a hand in running 
the Colloquium and editing its Ergebnisse.

“Menger was visiting the USA [in 1931] when Gödel discovered the incompleteness 
theorem and used it to refute the remaining three of Hilbert’s conjectures. He 
learned by letter that Gödel had lectured in the Colloquium ‘On Completeness 
and Consistency’. This was the lecture required for Gödel’s habilitation. The paper 
required for the same procedure, ‘On the undecidability of certain propositions 
in the Principia Mathematica,’ had been published in Hahn’s ‘Monatshefte’. In 
his Colloquium lecture, Gödel presented a simpler approach. Instead of Russell’s 
theory of types, he used Peano’s axioms for the natural numbers. This soon 
became the standard approach …

“Menger was particularly fond of Gödel’s results on intuitionism. These 
vindicated his own tolerance principle. Specifically, Gödel proved that intuitionist 
mathematics is no more certain, or more consistent, than ordinary mathematics 



(‘Zur intuitionistischen Arithmetik und Zahlentheorie’, Heft 4) … Menger brought 
Oswald Veblen to the Colloquium when Gödel lectured on this result. Veblen, 
who had been primed by John von Neumann, was tremendously impressed by 
the talk and invited Gödel to the Institute for Advanced Study during its first full 
year of operation: A signal honour that proved a blessing in Gödel’s later years” 
(Karl Sigmund in Selecta Mathematica, pp. 14). 

The Gödel papers contained in these five volumes are as follows, with summaries 
based on the Annotated Bibliography of Gödel by John Dawson: 

(1) ‘Ein Spezialfall des Entscheidungsproblems der theoretischen Logik,’ Heft 2, 
pp. 27-28. This undated contribution was not presented to a regular meeting 
of the colloquium, but appeared among the Gesammelte Mitteilungen for 
1929/30. In the context of the first-order predicate calculus without equality, 
Gödel describes an effective procedure for deciding whether or not a certain 
formula is satisfiable; the procedure is related to the method used in [his 
dissertation Die Vollstandigkeit der Axiome des logischen Funktionenkalküls] 
to establish the completeness theorem.

(2) ‘Über Vollständigkeit und Widerspruchsfreiheit,’ Heft 3, pp. 12-13. Closely 
related to [Über formal unentscheidbare Sätze der Principia Mathematica und 
verwandter Systeme I, 1931], this paper notes extensions of the incompleteness 
theorems to a wider class of formal systems. The system considered in his 
1931 paper is based on Principia Mathematica and allows variables of all finite 
types. Here Gödel observes that any finitely-axiomatizable, omega-consistent 
formal system S with just substitution and implication (modus ponens) as 
rules of inference will possess undecidable propositions whenever S extends 
the theory Z of first-order Peano arithmetic plus the schema of definition 
by recursion; and indeed, that the same is true of infinite axiomatizations 
so long as the class of Gödel numbers of axioms, together with the relation 
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of immediate consequence under the rules of inference, is definable and 
decidable in Z.

(3) ‘Eine Eigenschaft der Realisierungen des Aussagenkalküls,’ Heft 3, pp. 20-
21. In answer to a question of Menger, Gödel shows that given an arbitrary 
realization of the axioms of the propositional calculus in a structure with 
operations interpreting the connectives ~ and ⊃, the elements of the structure 
can always be partitioned into two disjoint classes behaving exactly like the 
classes of true and false propositions.

(4) Untitled remark following W. T. Parry Ein Axiomensystem für eine neue 
Art von Implikation (analytische Implikation), Heft 4, p. 6. During the 33rd 
session of the colloquium, November 7, 1931, the American visitor Parry 
introduced an axiom system for “analytic implication,” a concept of logical 
consequence entailing the unprovability of A -> B whenever B contains a 
propositional variable not occurring in A. Following Parry’s demonstration 
(via multi-valued truth tables) of this characteristic property, Gödel suggested 
that a completeness proof be sought for Parry’s axioms, while noting that the 
question whether Heyting’s propositional calculus could be realized using 
only finitely many truth values was then open. On p. 4 of this same issue, 
an article by Alt (“Zur Theorie der Krümmung”) mentions an unpublished 
suggestion by Gödel.

(5) ‘Über Unabhängigkeitsbeweise im Aussagenkalkül,’ Heft 4, pp. 9-10. To Hahn’s 
question, “Can every independence proof for statements of the propositional 
calculus be carried out by means of finite multi-valued truth tables?” Gödel 
provides a negative answer. 

(6) ‘Über die metrische Einbettbarkeit der Quadrupel des R3 in Kugelflächen,’ 
Heft 4, pp. 16-17.

(7) ‘Über die Waldsche Axiomatik des Zwischenbegriffes,’ Heft 4, pp. 17-18. 
Gödel’s contributions to geometry have been overlooked by bibliographers. 
Both (6) and (7) formed part of the 42nd colloquium, held February 18, 1932. 

In the former, Gödel answers a question raised by Laura Klanfer at the 37th 
colloquium, December 2, 1931: he shows that whenever a quadruple of points 
in a metric space is isometric to four noncoplanar points of R3, the quadruple 
is isometric, under the geodesic metric, to four points on the surface of a 
sphere. (The corresponding result for the usual metric on R3 is trivial.) In the 
second paper Gödel reformulates Wald’s axiomatization of the betweenness 
concept as a theorem about triples of real numbers, assigning the triple of 
distances (ab, bc, ac) to a triple (a, b, c) in a given metric space. The theorem 
states that b lies between a and c in the sense of Menger if and only if (ab, bc, 
ac) lies in that part of the plane x + y = z for which each of the four quantities 
x, y, z, and                                         (x + y –  z)(x –  y + z)(– x + y + z) is nonnegative.

(8) ‘Zur Axiomatik der elementargeometrischen Verknüpfungsrelationen,’ Heft 
4, p. 34. Only two brief comments were published from the discussion with 
the above title held as the 51st colloquium, May 25, 1932. In translation, 
Gödel’s remark reads in full: “[Some]one should investigate the system of 
all those statements about fields that in normal form contain no existential 
prefixes. The concepts of point and line, which are definable by application 
of existential prefixes (e.g., a point is an element for which there exists no 
nonempty element that is a proper part of it), are undefinable in this more 
restricted system.”

(9) ‘Zur intuitionistischen Arithmetik und Zahlentheorie,’ Heft 4, pp. 34-38. In 
this short but important paper, Gödel shows that although the intuitionistic 
propositional calculus is customarily regarded as a subsystem of the classical, 
by a different translation the reverse is true, not only for the propositional 
calculus but for arithmetic and number theory as well. (Independently 
and slightly later the same result was discovered by Gentzen and Bernays. 
Specifically, with each formula A of Herbrand’s system of arithmetic Gödel 
associates a translation A’ in an extension of Heyting’s arithmetic, such that 
A’ is intuitionistically provable whenever A is classically provable. Since it 

GÖDEL, Kurt. & VON NEUMANN, John.



provides an intuitionistic consistency proof for classical arithmetic, Gödel’s 
translation gives classical mathematicians grounds for maintaining that 
insofar as arithmetic is concerned, intuitionistic qualms amount to “much 
ado about nothing”; for intuitionists, however, the issue is not so much 
consistency as it is matters of proper interpretation and methodology.

(10) ‘Eine Interpretation des intuitionistischen Aussagenkalküls,’ Heft 4, pp. 
39-40. Gödel shows that Heyting’s propositional calculus can be given a 
natural classical interpretation. 

(11) Reprint of ‘Zum intuitionistischen Aussagenkalkül’ [Anzeiger der Akademie 
der Wissenschaften in Wien, vol. 69, 1932, pp. 65-66], Heft 4, p. 40. Though 
considerably more accessible than the original printing, this reprint has not 
been cited in earlier bibliographies. The text is identical to the original except 
for the addition of an opening clause attributing the question to Hahn.

(12) ‘Bemerkung über projektive Abbildungen,’ Heft 5, p. 1. This brief note, 
part of the 53rd colloquium, November 10, 1932, is devoted to proving that 
every one-to-one mapping of the real projective plane into itself that carries 
straight lines into straight lines is a collineation.

(13) ‘Diskussion über koordinatenlose Differentialgeometrie’ (with K. Menger 
and A. Wald), Heft 5, pp. 25-26. Gödel’s only joint paper, previously uncited. 
A single, mildly technical result is established, whose aim is to show that so-
called “volume determinants” are appropriate for giving a coordinate-free 
characterization of Gaussian surfaces. The paper is intended as a contribution 
to Menger’s program for making precise, in a coordinate-free way, the 
assertion that Riemannian spaces behave locally like Euclidean spaces.

Three further parts of the Ergebnisse were published (1934-37). They are rarely 
found, and were probably published in much smaller numbers than the first five 
parts owing to the political turmoil in Vienna which began with the failed Nazi 
coup in July 1934. They are important for the seminal papers on mathematical 
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economics they contain, by Schlesinger, Wald (two papers), and von Neumann.

“John von Neumann’s famous 1937 paper, the last article in the final number 
of the Ergebnisse (pp. 73-83), is “Über ein ökonomisches Gleichungssystem 
und eine Verallgemeinerung des Brouwerschen Fixpunktsatzes” (“On a System 
of Economic Equilibrium and the Generalization of Brouwer’s Fixed Point 
Theorem”). “Although von Neumann has only three publications that can directly 
be called contributions to economics [the other two being his paper and book with 
Morgenstern on game theory], he had enormous influence on the subject … [Von 
Neumann’s] expanding economy model consisted of two parts: first the input-
output equilibrium model that permits expansion; and second the fixed point 
theorem. The linear input-output model is a precursor of the Leontief model of 
linear programming as developed by Kantorovich and Dantzig, and of Koopman’s 
activity analysis. This paper, together with A. Wald (1935) [also in this volume] 
raised the level of mathematical sophistication used in economics enormously. 
Many current younger economists are high-powered applied mathematicians, in 
part, because of the stimulus of von Neumann’s work … His influence will persist 
for decades and even centuries in economics” (New Palgrave, p. 644).

The great importance of von Neumann’s paper has been emphasized by Richard 
Goodwin. “The greatest single intellectual mistake in my career occurred when 
Schumpeter came to me in 1938 or ‘39 and asked me to report on a very important 
new publication: the von Neumann paper given at the Menger seminar...I rashly 
judged it to be totally unrealistic...[and] reported back to Schumpeter that it was 
no more than a piece of mathematical ingenuity, failing to see that it contained 
two aspects close to Schumpeter’s heart - a rigorous solution to Walras’s central 
problem and a demonstration that the rate of profit arose from growth not a 
quantity of capital...I found no reference [in Schumpeter’s History] to what now 
appears to me to be one of the great seminal works of this century, the omission 

being possibly the result of my own blindness” (Goodwin, “Personal Perspective 
on Mathematical Economics”, Banca Nazionale del Lavoro Quarterly Review, 152 
(1985), pp. 3–13).

The three remaining economics papers in the Ergebnisse, by Schlesinger and 
Wald, are also highly significant. 

Karl SCHLESINGER, ‘Über die Produktionsgleichungen der ökonomischen 
Wertlehre’, Heft 6, pp. 10-11 
Abraham WALD, ‘Über die eindeutige positive Lösbarkeit der neuen 
Produktionsgleichungen’, Heft 6, pp. 12-18; and ibid., 2. Mitteilung, Heft 7, pp. 
1-6.

“The starting signal for the development that would bring a profound 
transformation to mathematical economics was given by Schlesinger. In the first 
paper on economics of the Colloquium presented on March 19, 1934 … he raised 
a question aimed at the center of Walrasian theory… Schlesinger suggested a 
modification of Leon Walras’s (and Gustav Cassel’s) equations that soon turned 
out to be essential … Immediately after that correct formulation was given, Wald 
proved the existence of a GE [general equilibrium] (also on March 19, 1934), and, 
at the next session of the Colloquium, on November 6, 1934, established existence 
under much weaker conditions. His two papers, providing the first proofs of 
existence for a GE, marked an important moment in the history of mathematical 
economics” (Debreu, pp. 1-2).

The Vienna Colloquium ended when Menger moved to the US in 1937 to take up 
a position at the University of Notre Dame. There he reinstated the Colloquium; 
its proceedings were published as Reports of a Mathematical Colloquium (Notre 
Dame: University Press, 1939-48). 
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THE VERY RARE INDIA PAPER ISSUE

HARRISON, John, [and Nevil MASKELYNE]. The Principles of Mr. Harrison’s 
Time-Keeper, with plates of the same. Published by Order of the Commissioners 
of Longitude. London: W. Richardson and S. Clarke for John Nourse and Mess. 
Mount and Page, 1767.

$135,000

Oblong 4to (282 x 225 mm), pp. xvii, [1, blank] (v-viii: Preface; ix-xvii: ‘Notes taken 
at the discovery of Mr. Harrison’s time-keeper’, both by Maskelyne), 19-31 (19-21: 
general account of H4; 22-31: description of the plates, both by Harrison), with 
10 engraved plates printed on India paper, one double-page folding. Contemporary 
marbled wrappers, uncut. An excellent copy, preserved in a morocco-backed box.

First edition, one of the very few copies with the plates printed on India paper, of 
the “description of the famous solution to the centuries-old world-wide problem 
of finding the longitude” (Grolier/Horblit). “Harrison’s chronometer not only 
supplied navigators with a perfect instrument for observing the true geographical 
position at any moment during their voyage, but also laid the foundation for 
the compilation of exact charts of the deep seas and the coastal waters of the 
world … There has possibly been no advance of comparable importance in aids 
to navigation until the introduction of radar” (PMM 208). In 1714 the Board of 
Longitude offered a reward of £20,000, a colossal sum at the time, to anyone who 
could find a reliable and accurate method for determining longitude at sea. In 1730 
the clockmaker John Harrison (1693-1776) completed a manuscript describing 
some of his chronometrical inventions, including a chronometer “accurate 
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enough to measure time at a steady rate over long periods, thus permitting the 
measurement of longitude by comparison of local solar time with an established 
standard time” (Norman). On the strength of his descriptions, Harrison obtained 
a loan from George Graham, a leading maker of clocks and watches, for the 
construction of his timekeeper. After numerous attempts, most of which either 
Harrison himself or his son William tested on ocean voyages, Harrison succeeded 
in constructing a chronometer ‘H4’ that was both accurate and convenient in 
size. Following successful tests on voyages to the West Indies in 1761 and 1764, 
Harrison felt that he had a right to the prize, but the Board of Longitude hedged, 
insisting on a demonstration and full written description of his invention. The 
demonstration took place on 22 August 1765, in the presence of the astronomer-
royal Nevil Maskelyne and a six-member committee of experts appointed by the 
Board. The results were written up and published in this pamphlet by Maskelyne, 
along with Harrison’s own description of his timekeeper. Officially the Board 
intended Principles to enable other clockmakers to construct H4, but it “was both 
incomplete of enough information to allow the duplication of the watch … and 
contain[ed] some accidentally-on-purpose errors. This was likely done as much 
to help maintain the hard-won knowhow of its inventor, as well as to protect 
any military advantage, given the importance of the H4 to maritime navigation” 
(Lake). Maskelyne’s Preface explains the reason for this special issue of Principles: 
“for the sake of the curious, and particularly artists who may be desirous to 
construct other watches after the model of Mr. Harrison’s, I have caused a few 
impressions of the plates to be taken off upon India paper; which, if it be made 
only a little damp, by being put for a few minutes between two wet sheets of paper, 
will receive the impression from the plates perfect, and will not shrink at all in 
the drying” (p. vii). Since this issue was also printed on oblong sheets, rather than 
the regular 4to, the plates remain unfolded, save the considerably larger 7th plate. 
Only one copy of this issue has sold at auction since the Frank S. Streeter copy 
(Christie’s, 16 April, 2007, lot 254, $228,000), and according to Christie’s no other 
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copy had sold for 30 years previously.

“In the early 1700s, European monarchies aspired to power by building world-
spanning networks of colonies and commercial ventures. As a result, the merchant 
fleets and navies that connected and protected these assets were critically 
important. Eighteenth-century sailors led dangerous lives, not least because they 
seldom knew their exact location on the open ocean. Although navigators readily 
determined latitude, or north-south position, by estimating the height of certain 
stars at their zenith, they could not determine longitude. This failure caused 
shipwrecks that killed thousands of mariners and lost cargoes worth fortunes. 
Several countries offered immense financial rewards for a solution to the problem; 
Britain promised £20,000 (several million dollars in today’s currency) for a way to 
establish longitude to within half a degree (30 nautical miles at the equator) after a 
journey from England to the West Indies. To judge proposed solutions, the crown 
established a Board of Longitude, made up of the Astronomer Royal, various 
admirals and mathematics professors, the Speaker of the House of Commons and 
10 members of Parliament.

“In effect, determining longitude depended on knowing the difference between 
local time and the time in Greenwich, site of the Royal Observatory. In principle, 
if a ship had a clock keeping Greenwich time, the navigator could measure the 
angle of the Sun to note local noon and compare it to the clock. If the clock read 2 
p.m., his longitude was two hours, or 30 degrees, west of Greenwich. The problem 
lay in finding a clock reliable enough to keep time during the long voyages of 
that era. The best pendulum clocks of the day were accurate enough, but were 
useless on a heaving ship at sea. Alternately, a less reliable clock might be used if 
some means could be devised to correct it frequently. In practice this meant an 
astronomical method, the best of which became known as the method of lunar 
distances, in reference to the fact that the Moon’s orbit causes it to continually 



change position in the sky. For example, a new moon, which appears close to the 
Sun, will have moved 180 degrees by the time it becomes a full moon two weeks 
later. The idea was for astronomers to provide tables of this angle between Moon 
and Sun (or Moon and selected stars in the night sky) as a function of Greenwich 
time. A measurement of this angle every few days would provide a correction 
to the mechanical clock. This scheme had two drawbacks: The first was that, at 
least initially, astronomers could not accurately predict the Moon’s motion; the 
second was that the mathematical calculations required of the mariner were very 
complex—they took hours, and errors were common.

“The chronometer and the method of lunar distances each had their proponents, 
and the solution of the longitude problem came down to a bitter battle between 
two Englishmen: John Harrison, a self-educated machinist who set out to make 
an accurate clock, and Nevil Maskelyne, astronomer and scion of the Church of 
England, who brought the method of lunar distances to fruition.

“John Harrison was born in Yorkshire and followed his father’s trade as a carpenter. 
This led to an interest in wooden (pendulum) clocks, which he became adept at 
making. His isolation from other clockmakers during this formative time was 
fortuitous—when most clockmakers learned that the prize required their clocks to 
maintain a rate constant to within three seconds per day for six weeks at sea, they 
regarded the task as impossible. Harrison saw it as a challenge, and developed the 
technical advances that justified his confidence, including the so-called gridiron 
pendulum (which used metals with different expansion coefficients to overcome 
temperature sensitivity), a nearly frictionless gear system and a ratcheted spring 
that kept the clock running while being rewound.

“By 1728 the longitude prize had been open for 14 years without a serious 
contender. Young Harrison journeyed to London to learn about the award and 
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met Edmond Halley (1656-1742), the Astronomer Royal. Halley treated him 
cordially and suggested that Harrison consult George Graham (1673-1751), one 
of London’s leading clockmakers. Harrison and Graham took an immediate liking 
to each other—they talked for 10 hours that day, leaving Graham so impressed 
that he offered to lend Harrison money (without security or interest) to develop 
the young inventor’s ideas.

“Seven years passed before Harrison offered a solution to the problem: the 
clock later known as H1. It was cumbersome and heavy, with jutting arms and 
counterweights, but a small committee of the Royal Society, including Halley and 
Graham, declared it a masterpiece of ingenuity and urged submission to the Board 
of Longitude. This body, ever skeptical after years of spurious claims, proposed a 
short sea trial before attempting the expensive, official crossing of the Atlantic. So 
Harrison and H1 embarked on a run to Lisbon and back. The numerical result of 
the clock’s performance has not survived, but the captain was very impressed. The 
ship’s navigator admitted that on the return voyage, just before the English coast 
was sighted, his own calculations put them more than 90 miles offshore, while 
Harrison maintained that no, they were just about there.

“Although the voyage didn’t immediately lead to a trans-Atlantic test, it was 
productive for Harrison, who identified several potential improvements to H1. 
With these in mind, he withdrew his initial submission and set about building a 
second clock (H2). The Board of Longitude, impressed by H1, awarded Harrison 
£500 toward development expenses. He completed H2 three years later and spent 
two more years testing it on land. By 1741, testing was complete, but England was 
at war with France and her allies. No one was prepared to risk a sea trial of H2 
and possible capture by the French. As it turned out, H2 was never tested at sea.

“While waiting for the war to end, Harrison built a third clock, with the Board 

of Longitude contributing another £500 to meet his costs. But this time, 
Harrison’s expertise failed him. H3 never worked to Harrison’s satisfaction, and 
he abandoned it after five years. Taking a different tack, he proposed in 1746 to 
build two more clocks. Of these, H4 would be his masterpiece. It took another 13 
years to complete, but was quite different from its predecessors. Instead of being 
all angles and arms, it appeared as a beautifully encased pocket watch, albeit five 
inches in diameter. After two years of testing the Board accepted it for the full 
trans-Atlantic test.

“Harrison, now 68, left H4 in the care of his son William for the long voyage 
in 1761. The trial ended upon reaching Jamaica, where, amazingly, H4 reported 
the longitude with less than two miles of error. Back in England, the overjoyed 
Harrisons awaited their award of £20,000. Then everything started to go wrong. 
The Board of Longitude refused to believe the test results were not just a stroke of 
luck and demanded a second trial. The Harrisons protested vehemently. They had 
met the terms of the prize and now they wanted it. Uproar ensued, and to quell 
it, Parliament offered William Harrison £5,000 for results so far, in return for full 
disclosure of the construction details of H4. William refused this partial award 
and decided to attempt a second trial in 1764, this time to Barbados.

“The Reverend Nevil Maskelyne now enters the story. He had no particular 
influence prior to this stage of Harrison’s odyssey, but the Board of Longitude 
made a decision that quickly embroiled him in the controversy. Although 
Maskelyne was not then a member of the Board of Longitude, he was a Fellow 
of Trinity College, Cambridge, and a Fellow of the Royal Society. For some years 
he had maintained a strong interest in, and advocacy of, the method of lunar 
distances for determining longitude. Furthermore, as Tobias Mayer (1723-62) 
in Germany had recently resolved the problem of predicting the motion of the 
Moon, the method was ripe for testing. Thus, when the Board of Longitude asked 
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Maskelyne to join the voyage to Barbados, primarily to establish the longitude of 
the capital, Bridgetown, by observation of Jupiter’s satellites, he was also to test 
the method of lunar distances and its accuracy compared to Harrison’s H4 clock.

“The results were announced at a memorable meeting of the Board of Longitude 
in early 1765. H4 had done it again, producing the Bridgetown longitude with less 
than ten miles of error after a journey of more than 5,000 miles. The rival method 
of lunar distances fared slightly worse, yielding the result to “better than 30 miles.” 
By way of explanation, four of the ship’s officers at the meeting stated that their 
calculations were a product of Maskelyne’s instructions, and, by implication, 
subject to their own inexperience. In any case, since the lunar distance method 
depended on tables that only Maskelyne could calculate, the method was not yet 
ready to claim the prize.

“The Board of Longitude accepted the result of the Barbados trial of H4, but they 
remained unconvinced that the instrument was not just a fluke—a one-off that 
might never be replicated. Parliament passed a new Act that yielded £10,000 to 
Harrison but withheld the remaining half of the prize until he met a series of 
conditions. According to Parliament’s terms, Harrison had to reveal in writing 
exactly how the watch had been made, including full drawings of each part and 
explanation of every detail to a select team of watchmakers. Then he needed to 
wait for these persons to manufacture similarly accurate watches themselves. 
Moreover, Harrison was compelled to relinquish H4 to the Astronomer Royal for 
long-term checking of its accuracy.

“Here was the rub: Two Astronomers Royal had died in rapid succession, and 
no sooner had Maskelyne returned from Barbados than the King [George III, 
1738-1820] appointed him to the position; the appointment automatically put 
him on the Board of Longitude. As a result, Harrison’s nemesis not only became 
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an influential voice on the Board of Longitude but also took charge of checking 
his best clock. Not surprisingly, the resulting report on H4 was entirely negative. 
It seems Maskelyne prevaricated over the meaning of “accuracy” to condemn 
Harrison’s creation. In this era, all clocks gained or lost time at some rate, but 
so long as that rate was constant and known, one could derive an accurate time. 
Maskelyne refused to allow these corrections.

“While waiting for the copies of H4 to be completed, Harrison spent three 
precious years building H5—now approaching 80, he was becoming increasingly 
desperate. As the Board of Longitude debated sending his watch to the arctic and 
elsewhere for lengthy tests, Harrison appealed to King George III for help. The 
King had H5 installed at his own personal observatory at Kew, and he himself 
supervised its daily winding and checking. Under his care, H5 performed so 
admirably that “Farmer George” was outraged by what had gone before. “By God, 
Harrison,” he roared, “I’ll see you righted!” and threatened to appear in person 
before Parliament (under a lesser title, of course).

“So the affair finally wound down. The Board of Longitude, under the continuing 
influence of Nevil Maskelyne, still managed to find reasons to withhold some of 
Harrison’s prize money. Nevertheless, including interim advances, he received a 
total of £23,065 from the Board over four decades. A copy of H4 made by another 
watchmaker accompanied Captain James Cook (1728-79) on his second voyage 
to the Pacific, where it was hailed as having “an amazing degree of accuracy,” 
although Cook also used the lunar distances method with good results. In a 
triumph of his own, Maskelyne had initiated the annual publication of The 
Nautical Almanac, which included the necessary tables for applying that method. 
Cook referred to it as “our faithful guide through all vicissitudes of climates.” And 
since sufficiently accurate clocks (later called marine chronometers) remained 
very expensive for a long while, the method of lunar distances remained in use 

for more than a hundred years.

“Harrison died in 1776, unreconciled with Maskelyne to the end. One cannot 
blame him, but because it turned out that posterity owed much to both of them, 
it would have been pleasing had their relationship ended otherwise” (J. Donald 
Fernie, ‘The Harrison-Maskelyne Affair,’ American Scientist 91 (2003), 403-5).

Baillie, p. 272; Crone 564; Grolier/Horblit 42b; Norman 995 (all the regular 4to 
issue). Lake, ‘In-Depth: The Microscopic Magic of the H4, Harrison’s First Sea 
Watch’ (https://watchesbysjx.com/2019/09/john-harrison-marine-chronometer-
h4-diamond-pallets.html). See Lake for a detailed account of the construction 
of H4.
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INVENTION OF THE 
OPHTHALMOSCOPE

HELMHOLTZ, Hermann von. Beschreibung eines Augen-Spiegels zur Untersuch-
ung der Netzhaut im lebenden Auge. Berlin: A. Förstner, 1851.

$14,500

8vo (224 x 137 mm), pp. [1-3], 4-43, [5], engraved plate by Afinger after Helmholtz. 
Original yellow printed wrappers, uncut and unopened.

First edition, an exceptionally fine copy in original printed wrappers, of this 
famous work which describes Helmholtz’s announcement of his invention of the 
ophthalmoscope, one of the most important clinical tools in medicine, which 
greatly improved the ability of ophthalmologists to diagnose eye disease and 
revolutionized visual science. The invention of the ophthalmoscope by Helmholtz 
has been called “the greatest event in the history of ophthalmology, which advanced 
it toward the goal of independence as a specialty” (Gorin). This invention was a 
by-product of Helmholtz’s attempt to demonstrate to his physiology students that 
when the human eye is made to glow with reflected light, the light emitted from the 
pupil follows the same course it took in entering. Realizing that if the light could 
be brought to a focus the details of the retina would be made visible, he invented 
a device to accomplish this objective. “With this instrument it was possible for the 
first time to examine the interior of the living eye. Although crude attempts had 
been made earlier to see into the eye, it was Helmholtz’s invention of a workable 
instrument in 1850 and the publication of his monograph in 1851 that laid the 
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basis of scientific ophthalmology. Helmholtz’s invention of the ophthalmoscope 
arose from an attempt to demonstrate for his class in Königsberg the nature of 
the glow of reflected light sometimes seen in the eyes of animals such as the cat. 
When the great ophthalmologist A. von Graefe first saw the fundus of the living 
eye, with its disc and blood-vessels, his face flushed with excitement, and he cried 
‘Helmholtz has unfolded to us a new world!’ (Hagerstrom Library). The Augen-
Spiegel was printed in a very small edition: there are no copies in the Becker, Osler 
or Cushing Collections. Rare on the market in such fine condition.

“Helmholtz’s invention had its roots in earlier attempts to see the back of the 
eye, though these were insufficient to permit proper inspection of the human 
fundus. In 1703, Jean Méry (1645–1722), who worked at the Hôtel Dieu, found 
that the luminosity of the cat’s eye could be seen when the animal was held under 
water, showing that it was essentially an optical phenomenon. Philippe de la 
Hire, 6 years later, thought it was owing to abolition of corneal refraction under 
water that the incident light rays emerged divergent and were thus seen by the 
observer’s eye. In the fourth essay in his Oeuvres (2 volumes, Leiden, 1717), Edmé 
Mariotte (1620–1684), who was both physicist and priest, observed that a dog’s 
eye is luminous because its choroid is white; and the darker choroid in man and 
animals allowed no clear image. Richter provoked further interest when it was 
found that luminosity could still be present in a blind eye, and in 1792 Georg 
Joseph Beer had observed the luminosity of the fundus in aniridia. However, 
spontaneous luminosity in man remained unexplained.

“Bénédict Prévost, Professor of Philosophy at Montaubon in France (1755–1819), 
repeated Mariotte’s experiments, examining the eyes of a cat in the dark, and 
explained that the retina was invisible: ‘It is not the light which proceeds from the eye 
to an object that enables the eye to perceive that object, but the light which arrives 
in the eye from it.’ This was an important discovery that dispelled the accepted 
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notions that light came from within the eye to permit animals to see in the dark.

“In 1821, the Swedish naturalist Karl Asmund Rudolphi (1771–1832) shone a light 
into a decapitated cat’s eyes and showed that the reflecting eye emitted light along 
the same line as the direction of the in-going rays. Twenty-seven years before 
Helmholtz’s work, in 1823, Jan Evangelista Purkinje (1787–1869), Professor of 
Physiology at Breslau, had observed that under certain illumination human eyes 
could be made luminous: in 1825 Purkinje started to use lenses to examine the 
back of the eye. His crucial work, published in Latin, was unrecognized for many 
years: ‘I examined the eye of a dog by using the spectacle lens of a myope and 
placing a candle behind the dog’s back … I found the light as the source, which is 
reflected from the concavity of the spectacle lens into the interior of the eye. From 
there it is again reflected. I immediately repeated the experiment on a human eye 
and found the same phenomenon’.

“The pupil too appeared black. The ‘beautiful orange glow was reflected when 
light was thrown into it’. Unnoticed, this was rediscovered independently by 
William Cumming in England, who, in 1846, wrote ‘On a luminous appearance 
of the human eye and its application to the detection of disease of the retina and 
posterior part of the eye.’ He explained that the axis of illumination and observation 
had to be coincident to view the fundus. A year later, the Berlin physiologist Ernst 
Wilhelm Ritter von Brücke (1819–1892) made the same observation: ‘A short time 
ago in the evening as I was standing between the chandelier and the door in the 
auditorium of this university, I saw a young man whose pupils were illuminated 
with a bright red light as he turned to close the door through which he had just 
passed … If one wishes to see this reflex in human eyes … Take the usual oil lamp 
with its cylindrical wick and the glass chimney, … and regulate the wick in such 
fashion that it burns with a short, intense flame. Then set the lamp close to you, 
but place the subject 8 to 10 feet away, … If [the subject] then looks with widely 



opened lids towards the darkness adjacent to the lamp, or if he slowly moves his 
eyes to and from, then the pupils will be illuminated with a reddish light, while 
the iris, in contrast, will appear slightly greenish.’ Helmholtz was later generously 
to say: ‘Brucke himself was but a hair’s breadth away from the invention of the 
ophthalmoscope. He had only failed to ask himself what optical image was formed 
by the rays reflected from the luminous eye. Had it occurred to him, he was the 
man to answer it just as quickly as I did and to invent the ophthalmoscope.’

“Adolf Kussmaul (1822–1902) attempted to see the fundus in 1845. He applied a 
plano-concave lens of the same power as the cornea to the eye, ‘in an effort to see 
the human optic nerve.’ Although Kussmaul failed to view the living fundus, he 
did show in vitro that removal of the cornea and lens rendered the fundus visible, 
but lack of illumination thwarted his efforts.

“There is also a British claim for precedence. Three years before Helmholtz 
announced his discovery, Charles Babbage FRS (1791–1871) invented an 
instrument consisting of a piece of plain mirror, with the silvering scraped off at 
2 or 3 small spots in the centre, held within a tube at an angle so that rays of light 
falling on it through an opening in the side were reflected into the patient’s eye. 
The observer looked through the clear spots from the other end of the mirror. As 
Helmholtz noted, Babbage’s instrument would have worked if a concave lens of 
4 or 5 dioptres had been inserted to correct the convergent rays. Babbage used a 
plain mirror with a central opening, the first for looking into the eye through an 
aperture. When he showed it to the ophthalmologist Thomas Wharton Jones, the 
retina was not adequately seen. Babbage, however, did not pursue his invention. 
In 1854, Wharton Jones, in his ‘Report on the ophthalmoscope’, said: ‘It is but 
justice that I should here state, however, that 7 years ago [i.e. 1847] Mr. Babbage 
showed me the model of an instrument that he had contrived for the purpose 
of looking into the interior of the eye.’ However, Hirschberg has disputed his 
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claim. The major and lasting achievement came when Helmholtz announced the 
invention of an ‘eye-mirror’ in December 1850.

“Helmholtz was born on 31 August 1821 at Potsdam. His father, Ferdinand, was a 
teacher of philology and philosophy, while his mother was a Hanoverian, a lineal 
descendant of the great Quaker William Penn. He graduated in Medicine from 
the military medical school in Berlin in 1843, greatly influenced by Johannes 
Mueller, who had devised the Law of Specific Nerve Energies. Mueller had also 
trained Henle, Schwann and Du Bois-Reymond. Helmholtz recalled: ‘I recall my 
student days and the impression made upon us by a man like Johannes Mueller, 
the physiologist. When one feels himself in contact with a man of the first order, 
the entire scale of his intellectual conception is modified for life; contact with 
such a man is perhaps the most interesting thing life has to offer’.

“Helmholtz’s graduation thesis described the anatomic connection between 
neurones and nerves. He wrote in 1847 what has been described as one of the 
great scientific papers of the 19th century: Über die Erhaltung der Kraft [On the 
conservation of energy]. In this he showed mathematically that all forms of energy 
can be transformed from one form to another, but energy cannot be created or 
destroyed. He served as physician to the army for several years, before following 
an academic career in the physical sciences.

“In his researches Helmholtz noticed that the pupil normally appeared black, but 
under certain conditions seemed red and emitted light. This convinced him that 
the emitted light was no more than reflected light. However, advancing from his 
predecessors, he analyzed how the emitted rays formed optical images. He tried 
to obtain an optical image of the fundus by devising an instrument that would 
allow his own eye to be placed directly in line with the light rays entering and 
leaving the eye. He used 3 microscopic cover glasses as a mirror to reflect light, 

but they had to be transparent to allow him to see the retina; this he achieved and 
thus saw the retina in detail.

“The announcement was made in a paper presented by his friend Du Bois-
Reymond to the Berlin Physical Society on 6 December 1850. However, the text 
was lost, and on 17 December 1850, Helmholtz, with ill-concealed excitement, 
wrote to his father: ‘I have made a discovery during my lectures on the Physiology 
of the Sense-organs, which may be of the utmost importance in ophthalmology … 
It is, namely, a combination of glasses, by means of which it is possible to see the 
dark background of the eye, through the pupil, without employing any dazzling 
light, and to obtain a view of all the elements of the retina at once, more exactly 
than one can see the external parts of the eye without magnification, because the 
transparent media of the eye act like a lens with magnifying power of twenty. The 
blood vessels are displayed in the neatest way, with the branching arteries and 
veins, the entrance of the optic nerve into the eye, etc. … My discovery makes 
the minute investigation of the internal structures of the eye a possibility. I have 
announced this very precious egg of Columbus to the Physical Society at Berlin, as 
my property, and am now having an improved and more convenient instrument 
constructed to replace my pasteboard affair. I shall examine as many patients as 
possible with the chief oculist here, and then publish the matter’.

“Helmholtz’s first public announcement of the ophthalmoscope was on 11 
November 1851 at the Society for Scientific Medicine of Königsberg. His 43-page 
monograph was also published in 1851 [as the offered work]. Helmholtz called 
his new instrument ‘Augenspiegel’ (eye mirror). It comprised a lens and a mirror 
for reflecting light. The instrument was used for examining the retina and adnexa 
of the eye. He recognized 3 essential components: a light source, a mirror to direct 
light toward the eye and a device to focus the image on the retina. This instrument 
was known in England as an ‘eye speculum’, but Maressal de Marsilly of Calais in 
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1852 called it the ‘ophthalmoscope’ …

“Von Graefe facilitated the introduction of the ophthalmoscope to clinical 
ophthalmology. Some held it might harm the eye. Anagnostakis, in 1854, 
popularized the instrument in France, whilst in England, it was used and 
developed by W. Spencer Watson and William Bowman, though many remained 
sceptical and at first it was utilized infrequently in many countries …

“Fundal changes in disease were soon recognized by Albrecht von Graefe (1828–
1872), undoubtedly the greatest German ophthalmologist of the 19th century, 
who founded the Archiv für Ophthalmologie and the eye hospital in Berlin. In 
1855, von Graefe described albuminuric retinitis. By 1860 he had also shown 
fundal changes in glaucoma and in retinal arterial embolism; he introduced 
iridectomy and cataract extraction and described papillo-oedema and its 
neurological significance. Coccius in 1853 illustrated both retinal detachment 
and retinitis pigmentosa. Liebriech recognized central retinal venous thrombosis 
in 1855. However, practising physicians were still slow to appreciate the benefit 
of ophthalmoscopy. Clifford Allbutt wrote in 1871: ‘The number of physicians 
who are working with the ophthalmoscope today in England may, I believe, be 
counted on the fingers of one hand.’ Allbutt did much to change this with his 
book On the Use of the Ophthalmoscope in Diseases of the Nervous System and the 
Kidneys, published in 1871, as did A Manual and Atlas of Medical Ophthalmoscopy 
compiled by his friend Sir William Gowers” (Pearce).

Albert 1032; Garrison-Morton 5866; Gorin, History of Opthalmology, 1982 
(pp. 125-6); Grolier/Medicine 65; Heirs of Hippocrates 1886; Lilly, Notable 
Medical Books, 205; Norman 1041; Waller 4294. Pearce, ‘The Ophthalmoscope: 
Helmholtz’s Augenspiegel,’ European Neurology 61 (2009), pp. 244-249.
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PMM 323 - THE FIRST LAW 
OF THERMODYNAMICS

HELMHOLTZ, Hermann. Über die Erhaltung der Kraft, eine physikalische Ab-
handlung, vorgetragen in der Sitzung der physikalischen Gesellschaft zu Berlin am 
23sten Juli 1847. Berlin: Georg Reimer, 1847.

$45,000

8vo (220 x 135 mm), pp. [iv], 72. Later 19th century plain blue wrappers with orig-
inal front printed wrapper cut down and mounted on upper cover (wrappers a bit 
soiled). Three pages of early manuscript notes in an unidentified hand bound in 
at end discussing the concept of ‘Kraft’ in various areas of physics and referring to 
Humboldt’s Cosmos.

First edition, rare, of “the first comprehensive statement of the first law of 
thermodynamics: that all modes of energy, heat, light, electricity, and all chemical 
phenomena, are capable of transformation from one to the other but are 
indestructible and cannot be created” (PMM). “On the basis of this short paper, 
written when he was only twenty-six, Helmholtz is ranked as one of the founders, 
along with Joule and Mayer, of the principle of conservation of energy. The 
paper sets forth the philosophical and physical basis of the energy conservation 
principle: Helmholtz maintained that the scientific world view was based on 
two abstractions, matter and force, and since the only possible relationship that 
can exist among the ultimate particles of matter is a spatial one, then ultimate 
forces must be moving forces radically directed. This can be inferred from the 
impossibility of producing work continually from nothing. Helmholtz analyzed 
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different forms of energy and different types of force and motion, grouping 
them into two categories, active (kinetic) and tension (potential). He also gave 
mathematical expression to the energy of motion, providing an experimental 
measure for research on all forces, including those of muscle physiology and 
chemistry” (Norman). “Intended expressly for ‘physicists,’ Helmholtz’s 1847 paper 
must be counted as one of the most impressive first publications in the history of 
physics. Helmholtz had the highest regard for the principle he developed there, 
speaking of it fifteen years later, for example, as the most important scientific 
advance of the century because it encompassed all laws of physics and chemistry. 
On the occasion of Helmholtz’s hundredth birthday, in 1921, his former student 
Wilhelm Wien could write that the significance of the principle was still growing” 
(Jungnickel & McCormach, p. 161). ABPC/RBH record 10 copies in the last fifty 
years, the most recent being a copy in a modern binding, without wrappers, sold 
at PBA Galleries in 2015, which made $27,000.

“Benjamin Thompson, Count Rumford, the American-born scientist largely 
responsible for the foundation of the Royal Institution and the founder of 
the Royal Society’s Rumford Medal, was the first to challenge successfully the 
accepted theory that heat was the manifestation of an imponderable fluid called 
‘caloric’. He declared, and gave experimental proof before the Royal Society in 
I798, that heat was a mode of motion. Rumford was, in fact, conspicuous in his 
day for what was considered his old-fashioned theory of heat. He harked back to 
the seventeenth-century views of Bacon, Locke and Newton in opposition to the 
fashionable modern theory of caloric, which, indeed, worked very well, especially 
in chemistry.

“Sadi Carnot, in 1824, approached very close to the principle of the conservation 
of energy and his brother found among his papers an almost explicit statement 
of it, although Carnot had actually used the caloric theory in his researches. J. R. 
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Mayer, in Liebig’s Annalen, 1842, demonstrated its application in physiological 
processes, but his paper made little impression until it was reprinted as a polemic 
in 1867. J. P. Joule made a manuscript translation of Mayer’s thesis for his own 
use, and, in a series of papers in the Philosophical Magazine, 1840-3, provided 
experimental proof of the mechanical equivalent of heat for physical phenomena” 
(PMM).

Helmholtz worked out the principle of the conservation of force soon after 
completing his education in Berlin. While a student at the gymnasium in 
nearby Potsdam where his father taught classical languages, he had decided 
that he wanted to study physics. Since his father could afford this plan only if he 
studied physics within a medical education, in 1838 he entered the Friedrich-
Wilhelms-Institut in Berlin. This state medical-surgical institution trained army 
physicians by providing them with a free medical education at Berlin University. 
Helmholtz wrote his dissertation at the university on the physiology of nerves 
under Johannes Muller and received his M.D. in 1842. In 1843 he published his 
first independent investigation in Muller’s Archiv and that year took up his duties 
as army surgeon at Potsdam. There at the army post, he set up a small physical-
physiological laboratory. He also kept up the scientific associations he had formed 
at Berlin University.

In Berlin, Helmholtz was drawn into the circle of Muller’s students, befriending 
especially du Bois-Reymond and Brucke, who were united in their desire to 
eliminate from physiology the concept of life force, in their eyes an unscientific 
concept left over from nature philosophy. They wanted to see how far physics and 
chemistry could go in explaining life processes, which brought them into contact 
with physicists in Berlin, above all with Magnus. Because a state examination for 
physicians required Helmholtz to spend a half year in Berlin, in the winter of 
1845-46 he worked regularly in Magnus’s private laboratory. Du Bois-Reymond, 



who had participated in Magnus’s physical colloquium, introduced Helmholtz 
to the newly formed Berlin Physical Society, which was soon to provide the 
first audience for his work on the conservation of force. He regularly attended 
the meetings of the society, and for the first volume, as for later volumes, of the 
Fortschritte der Physik, he reported on researches in physiological heat.

“Helmholtz’s work on the conservation of force required a sound knowledge of 
mathematical physics, which he had acquired in his early years in Berlin. He 
had read extensively in the literature; in 1841, for example, after his first medical 
examinations were over, he was left with some free time, which he devoted to the 
study of mathematics and the advanced parts of mechanics. On his own, or with 
a friend, he studied the writings of Laplace, Biot, Poisson, Jacobi, and others. He 
attended no lectures in mathematical physics or in mathematics at Berlin; in these 
subjects he was largely self-taught.

“By 1847, the year of his publication on the conservation of force, Helmholtz 
had already been ‘convinced for years,’ according to his friend and biographer 
Leo Koenigsberger, of the validity of a principle of this sort. He recognized that 
the question of whether living beings are to be understood by the action of a life 
force or by the action of the same forces that occur in lifeless nature is closely 
connected with a conservation principle for forces. He also recognized that to 
establish to the satisfaction of the scientific world a mathematically formulated 
conservation principle would require a series of investigations in various parts 
of physiology and physics. In 1845, for example, he published a paper in which 
he tested his physical understanding of a difficult physiological problem, namely, 
the chemical changes occurring in muscles owing to their mechanical action. 
Studying frogs with the help of a self-constructed electrical machine and a Leyden 
jar, he succeeded in demonstrating these changes and even obtained quantitative 
results. For even more exact results, he had to determine the relations between 
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the action of muscles and the heat developed, which required new investigations. 
In the Fortschritte der Physik for 1845, which appeared in 1847, Helmholtz 
published a report on theories of physiological heat which he later acknowledged 
as belonging to his work on the conservation of force.

“In February 1847, while still an army surgeon at Potsdam, Helmholtz wrote to 
du Bois-Reymond that in his latest reworking of an essay on the conservation 
of force, he had ‘thrown overboard everything that smells of philosophy,’ and 
he was anxious for du Bois-Reymond’s opinion of how it would go down with 
the physicists. That summer, Helmholtz read the completed work to the Berlin 
Physical Society, where it aroused enthusiasm, at least among some members. 
Helmholtz immediately sent it to Magnus asking him to forward it to Poggendorff 
for publication in the Annalen der Physik. Poggendorff appreciated the importance 
of the problem Helmholtz addressed and his handling of it, but he rejected the 
paper. It was too long to be fitted into the Annalen that year, Poggendorff said; 
but his main reason for rejecting it had to do with its nature: ‘The Annalen is 
necessarily dependent above all on experimental investigations,’ and Poggendorff 
would have to sacrifice some of these if he wished to ‘open the door to theoretical’ 
investigations like Helmholtz’s.

“Through Magnus, Poggendorff recommended that Helmholtz have the work 
published privately. Helmholtz accordingly approached the Berlin publisher G. A. 
Reimer, to whom he explained that the work would not be expensive to produce: 
it was not long, required no copper plates, and had ‘relatively little mathematical 
type.’ The subject of the work was the generalization of a ‘fundamental law of 
mechanics,’ he explained further; he had reached his result by ‘extensive and exact’ 
work on ‘all branches of physics.’ Privately, he had learned of considerable interest 
in this work; he submitted to Reimer letters about it from Magnus, du Bois-
Reymond, and Brucke, and he added that Muller could testify to his scientific 

ability. He realized that he could expect no money from its publication and only 
wanted fifteen free reprints. Reimer agreed to publish it and, to Helmholtz’s 
surprise, paid him an honorarium.

“From his study of the older mechanical treatises, Helmholtz learned the strong 
proof of the impossibility of perpetual motion. In his physiological studies, he 
questioned the possibility of perpetual motion outside mechanics, in heat, 
electricity, magnetism, light, and chemistry. His solution to the problem of 
determining precisely which relations must obtain between natural forces so that 
perpetual motion is impossible in general was the principle of the conservation 
of force.

“Helmholtz based the principle on either of two maxims, which he proved 
equivalent. One is that from any combination of bodies, it is impossible 
continuously to produce moving force from nothing. The other is that all actions 
can be reduced to attractive and repulsive forces that depend solely on the 
distance between material points. The problem of science is, he said, to reduce 
all phenomena to unchanging causes, which are the unchanging forces between 
material points. As the ‘solvability of this problem is also the condition of the 
complete comprehensibility of nature,’ the problem of ‘theoretical natural science’ 
will be solved once this ‘reduction of natural phenomena to simple forces is 
completed and at the same time is proven to be the only possible reduction the 
phenomena allow.’

“The impossibility of unlimited moving force had been adopted as a maxim by 
Carnot and Clapeyron in their theoretical studies of heat, and Helmholtz made 
it his ‘purpose’ to extend it throughout ‘all branches of physics.’ The maxim is 
equivalent in mechanics to the principle of the conservation of ‘living force’ (or 
‘vis viva’ or ‘kinetic energy’). Helmholtz proved that this principle requires that 
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the forces be ‘central,’ that is, that they depend on the distance between material 
points and act along their joining line. He showed that the increase in the living 
force of a material point due to the action of a central force equals the sum of 
the ‘tension forces’ due to the change in the position of the point … Helmholtz 
concluded that the sum of the living forces and the tension forces is constant. This 
he called the ‘principle of the conservation of force.’

“Helmholtz applied this conservation principle to some mechanical theorems 
and then to the other parts of physics, which provided the truly interesting 
cases and the testing ground. A supporter of the mechanical theory of heat, he 
accounted for the apparent loss of living force of two bodies after undergoing 
an inelastic collision by the conversion of their living force into tension forces 
and heat. He was especially interested in applying the conservation principle to 
electricity, magnetism, and electrodynamics, subjects which offered manifold 
instances of force conversions. For example, he deduced the electromotive force 
of two metals in a cell by equating through the conservation principle the heat 
developed chemically in the cell to that developed electrically in the wire. In this 
example, in which heat serves as a measure of the forces, he brought together 
nearly all of the known quantitative laws of electric current: Ohm’s law, Lenz’s law 
for the heat developed in a length of wire, James Prescott Joule’s more general law 
for the heat developed in any circuit, the laws of complex circuits that Kirchhoff 
was then working out, and Faraday’s law of electrolysis. In another example, 
Helmholtz applied the conservation principle to connect the chemical, thermal, 
and mechanical processes entering the electrodynamic interaction of a fixed, 
closed current produced by a cell and a nearby magnet free to move in space. Here 
he made use of Neumann’s potential for a closed current; with it and by simple 
mathematical steps, he derived a number of Neumann’s cases of induced currents. 
In addition to recovering these known results, he derived a new result, showing 
the power of the conservation principle to link the parts of physics; by equating his 

HELMHOLTZ, Hermann.

and Neumann’s formulas for the current in the wire, he showed that Neumann’s 
empirical, undetermined constant from electrical theory e is the reciprocal of 
the mechanical equivalent of heat. In these examples, to apply the conservation 
principle, Helmholtz did not need a detailed knowledge of the mathematical 
form of the acting central forces, the existence of which the principle presumably 
guaranteed. The forces were often still unknown or problematic; for example, 
with regard to Weber’s fundamental law of electric action, which relates the force 
between electric masses to their relative motion, Helmholtz observed that no 
hypothesis had yet been established that could reduce inductive phenomena to 
‘constant central forces.’

“Throughout his paper on the conservation of force, Helmholtz referred not only 
to theoretically founded laws but also to a good deal of experimental work on 
the establishment of laws by Riess, Poggendorff, Weber, and others. He pointed 
to his predictions as waiting to be tested. His purpose was not just theoretical; it 
was also to show the experimental significance of the new results he obtained by 
joining established laws by means of the conservation principle. He concluded his 
study with the observation that the ‘complete confirmation’ of the conservation 
principle was a main task of physics in the immediate future.

“But as Poggendorff noted when he rejected it, Helmholtz’s paper did not 
report original experiments. For that reason it could seem overly speculative 
to experimental physicists, who were not at first persuaded of the conservation 
principle. When physicists did admit it into their literature, they did so with 
caution. ‘I have received the first part of the physics annual report,’ Helmholtz 
wrote to du Bois-Reymond about the Fortschritte der Physik for 1847, ‘and 
was not a little surprised to see my Erhaltung der Kraft placed by Karsten with 
physiological heat phenomena, although I had submitted it written up separately.’ 
Later Helmholtz reported for the Fortschritte on related papers by Robert Mayer 



and others, and he took the occasion to place his own paper in the physical context 
he had originally intended for it.

“The task of persuading physicists of the conservation principle was not entirely 
Helmholtz’s in any case. With marked differences of approach and purpose, 
Mayer and several other natural scientists in the 1840s worked on problems 
arising from a widely shared belief in the unity of nature and the indestructibility 
and transformability of forces. As one of several statements of the measure of the 
relations between the forces of nature, Helmholtz’s came to be regarded as the 
mathematical foundation for the principle of the conservation of ‘energy.’ Within 
a few years, Helmholtz acknowledged that his terms ‘living force’ and ‘tension 
force’ were synonymous with W. J. M. Rankine’s ‘actual [kinetic] energy’ and 
‘potential energy’ and that Rankine’s term ‘conservation of energy’ was preferable 
to his own ‘conservation of force.’

“With Helmholtz’s principle, the several, often qualitative, assertions of the 
conservation and convertibility of forces received precise expression. The many 
newly discovered relations between the forces of nature did not require any major 
change in the understanding of these forces, which derived from the example of 
Newton’s gravitational force; this was one of the more remarkable implications of 
Helmholtz’s paper. Physicists who accepted Helmholtz’s reasoning were concerned 
on the most fundamental level, with just those things mechanics was concerned 
with: material points, constant central forces, relative positions and motions, the 
laws of motion and associated principles such as the principle of virtual velocities, 
and the principle of the conservation of force, or energy, which Helmholtz saw 
as an extension of the principle of the conservation of living force in mechanics. 
Helmholtz claimed that his paper of 1847 was independent of metaphysical 
considerations; later, in 1881, when he included it in his collected papers, he 
acknowledged that he had been indebted to Kant’s philosophy in his view that 

the law of causality was essential for understanding nature and that central forces 
were ultimate causes. He derived his conservation principle within a certain 
picture of the physical world, one governed by mechanical concepts and laws. It 
was one of the great conceptions of nature underlying much nineteenth-century 
physical research, and in Germany Helmholtz gave it a complete definition; over 
the course of his long career, he developed its implications throughout physics” 
(Jungnickel & McCormach, pp. 156-61).

Dibner 159. Garrison-Morton (online) 611. Horblit 48. Norman 1039. Printing 
and the Mind of Man 323. Jungnickel & McCormach, Intellectual Mastery of 
Nature, Vol. 1, The Torch of Mathematics 1800-1870 (1986).
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PMM 377 - HERTZIAN WAVES

HERTZ, Heinrich Rudolf. Ueber sehr schnelle electrische schwingungen. Offprint 
from Annalen der Physik, Bd. 31 (1887). With six other offprints documenting 
Hertz’s seminal work which demonstrated the existence of electromagnetic waves, 
which thereby provided the experimental proof of Maxwell’s theory and formed the 
foundation for wireless communication. Leipzig; Berlin: Johann Ambrosius Barth; 
George Reimer for the Königlich Akademie der Wissenschaften, 1887-1892.

$38,500

8vo (216 x 140 mm) & 4to (258 x 179 mm), original printed wrappers, front wrap-
per on no. 1 renewed, minor chipping and dust-soiling, several items creased and 
some with remains of stamps and postmarks. Presentation inscription in English on 
front wrapper of no. 7. See below for individual descriptions.

First edition, extremely rare offprint, of the first of Hertz’s papers on 
electromagnetic waves, accompanied by offprints of six further papers on the same 
subject, including ‘Ueber elektrodynamische Wellen im Luftraume und deren 
Reflexion’, in which Hertz first demonstrated the existence of electromagnetic 
waves propagating in air (‘Hertzian waves’). “In his Treatise on Electricity and 
Magnetism (1873) [Maxwell] gave no theory of oscillatory circuits or of the 
connection between currents and electromagnetic waves. The possibility of 
producing electromagnetic waves in air was inherent in his theory, but it was 
by no means obvious and was nowhere spelled out. Hertz’s proof of such waves 
was in part owing to his theoretical penetration into Maxwell’s thought” (DSB). 
“Experimental proof by Hertz of the Faraday-Maxwell hypothesis that electrical 
waves can be projected through space was begun in 1887, eight years after 
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Maxwell’s death. The two main requirements were (a) a method of producing 
the waves, supposing that they existed, and (b) a method of detecting them once 
they were produced. Hertz found the first problem easy to solve. He used the 
oscillatory discharge of a condenser. Detection was much more difficult, because 
there then existed no means of detecting currents alternating at the high speed 
of these waves. Hertz in fact used an effect as old as the discovery of electricity 
itself – the electric spark. By inducing the waves to produce an electrical spark 
at a distance, with no apparent connection between the oscillator and the spark 
gap, and by moving the sparking apparatus so that the length of the spark varied, 
Hertz proved beyond question the passage of electric waves through space… 
The experiments were reported periodically from 1887 onward in Annalen der 
Physik und Chemie” (PMM). “This discovery [of electromagnetic waves] and 
its demonstration led directly to radio communication, television and radar” 
(Dibner). “In the early 1890’s the young inventor Guglielmo Marconi read 
of Hertz’s electric wave experiments in an Italian electrical journal and began 
considering the possibility of communication by wireless waves. Hertz’s work 
initiated a technological development as momentous as it physical counterpart” 
(DSB). We can find no other copies of any of the papers [1]-[8] in auction records. 
The Smithsonian holds a copy of each of the offprints [1]-[7]; OCLC adds two 
other copies of [1], one in York (though not listed in their library catalogue), and 
one in Japan (not verified); two other copies of [2], one in Bern and one in Japan 
(not verified); and three other copies of [5], one in Bern and two in Yale.

The offered papers are as follows:

1. Ueber sehr schnelle electrische schwingungen [On very rapid electrical 
oscillations]. Offprint from Annalen der Physik, Bd. 31 (1887), pp. 421-
448 and one folding plate. Contemporary wrappers, upper wrapper 
renewed with matching paper with manuscript title label, lower wrapper 
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with publisher’s imprint. 

2. Ueber Inductionserscheinungen, hervorgerufen durch die elektrischen 
Vorgänge in Isolatoren [On electromagnetic effects produced by electrical 
disturbances in insulators]. Offprint from Sitzungsberichte der Königlich 
Preussischen Akademie der Wissenschaften zu Berlin, 10 November, 1887, 
pp. 1-12. Original printed wrappers (creased vertically and horizontally 
for posting and with postmark and remains of stamp on rear cover). 

3. Ueber die Einwirkung einer geradlinigen electrischen Schwingung 
auf eine benachbarte Strombahn [The action of a rectilinear electric 
oscillation on a neighbouring circuit]. Offprint from Annalen der Physik, 
Bd. 34 (1888), pp. 155-170 and one folding plate. Original printed 
wrappers.

4. Ueber elektrodynamische Wellen im Luftraume und deren Reflexion [On 
electrodynamic waves in air and their reflection]. Offprint from Annalen 
der Physik, Bd. 34 (1888), pp. 609-623. Original printed wrappers.

5. Uber Strahlen elektrischer Kraft [On rays of electric force]. Offprint from 
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 
zu Berlin, 13 December, 1887, pp. 1-11. Original printed wrappers 
(creased vertically and horizontally for posting). 

6. Die Krafte electrischer Schwingungen behandelt nach der Maxwell’schen 
Theorie [The forces of electric oscillations treated according to Maxwell’s 
theory]. Offprint from Annalen der Physik, Bd. 36 (1888), pp. 1-22. 
Original printed wrappers. 



7. Uber die Fortleitung electrischer Wellen durch Drähte [On the 
propagation of electric waves by means of wires]. Offprint from Annalen 
der Physik, Bd. 37 (1889), pp. 395-408 and one folding plate. Original 
printed wrappers, upper wrapper with English inscription by Hertz. 

Hertz’s work on electric waves began with Helmholtz’s proposal in 1879 of a prize 
problem connected with the behaviour of unclosed circuits in Maxwell’s theory. 
“Central to Maxwell’s theory was the assumption that changes in dielectric 
polarization yield electromagnetic effects in precisely the same manner as 
conduction currents do. Helmholtz wanted an experimental test of the existence 
of these effects or, conversely, of the electromagnetic production of dielectric 
polarization. Although at the time Hertz declined to try the Berlin Academy 
problem because the oscillations of Leyden jars and open induction coils which 
he was familiar with did not seem capable of producing observable effects, he kept 
the problem constantly in mind; and in 1886 shortly after arriving in Karlsruhe, 
he found that the Riess or Knochenhauer induction coils he was using in lecture 
demonstrations he was using in lecture demonstrations were precisely the means 
he needed for undertaking Helmholtz’ test of Maxwell’s theory …

“He produced electric waves with an unclosed circuit connected to an induction 
coil, and he detected them with a simple unclosed loop of wire. He regarded his 
detection device as his most original stroke, since no amount of theory could 
have predicted that it would work. Across the darkened Karlsruhe lecture hall 
he could see faint sparks in the air gap of the detector. By moving it to different 
parts of the hall he measured the length of the electric waves; with this value and 
the calculated frequency of the oscillator he calculated the velocity of the waves. 
For Hertz his determination at the end of 1887 of the velocity – equal to the 
enormous velocity of light – was the most exciting moment in the entire sequence 
of experiments. He and others saw its significance as the first demonstration of 
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the finite propagation of a supposed action at a distance …

“Hertz followed up his determination of the finite velocity of electric waves by 
performing a series of more qualitative experiments in 1888  on the analogy 
between electric and light waves. Passing electric waves through huge prisms of 
hard pitch, he showed that they refract exactly as light waves do. He polarized 
electric waves by directing them through a grating of parallel wires, and he 
diffracted them by interrupting them with a screen with a hole in it. He reflected 
them from the walls of the room, obtaining interference between the original and 
the reflected waves. He focused them with huge concave mirrors, casting electric 
shadows with conducting obstacles. The experiments with mirrors especially 
attracted attention, as they were the most direct disproof of action at a distance in 
electrodynamics. They and the experiments on the finite velocity of propagation 
brought about a rapid conversion of European physicists from the viewpoint 
of instantaneous action at a distance in electrodynamics to Maxwell’s view that 
electromagnetic processes take place in dielectrics and that an electromagnetic 
ether subsumes the functions of the older luminiferous ether” (DSB).

In the important first paper of his study [1], Hertz describes the ingenious apparatus 
he had devised to produce, detect, and measure the electromagnetic waves, the 
key to all his later discoveries. He “observed for the first time ‘wire waves’, that 
is, regular alternating currents with a very high frequency in conductive wires. 
These were the only waves he had yet detected. He described them to his master 
Hermann von Helmholtz in Berlin: ‘In the meantime I have succeeded in several 
further experiments. By means of the oscillations I used in my previous work, I 
am now able to produce standing waves with many nodes in straight stretched 
wires…’ Today we know these ‘further experiments’ in great detail from Hertz’s 
Laboratory Notes. On Saturday November 5th, Hertz sent for publication in 
Akademieberichte his paper [2] proving the existence of ‘polarization currents’ 

in insulators (our ‘displacement currents’), by detecting their electrodynamic 
actions” (Baird et al., p. 73).

In [3], Hertz investigated the effects of electric waves on conductors by 
transmitting a wave inside a two-wire coaxial transmission line. “Early in 1888 
he reported in the Annalen [in this paper] an indication of a ‘finite velocity of 
propagation of electric distance actions’, which gave him renewed confidence in 
his work” (Jungnickel & McCormmach, p. 87). 

It is in the crucial paper [4] that Hertz first demonstrates the existence of 
electromagnetic waves in air (rather than in wires). “In March 1888, Hertz was 
able to demonstrate the wave nature of something new, his recently conjectured 
‘air waves’, or what we call ‘Hertzian waves’. At this point he wrote Helmholtz 
as follows: ‘Electrodynamical waves in air are reflected from solid conducting 
walls; at normal incidence the reflected waves interfere with the incident and 
give rise to standing waves in the air …’ But of what do these air waves consist. 
What oscillates” This was so new for Hertz that the first times he described it 
he did nor even dare to use the same verb, ‘to oscillate’, used for wire waves … 
What it is that fluctuates Hertz called successively (in paper [4]): ‘inductive 
action’, ‘electrodynamic action’ and ‘electric force’. We note that these air waves 
are transverse; this is clearly shown in the figure of paper [4]: the direction in 
which the electric force fluctuates or oscillates is perpendicular to the direction of 
the wave propagation … From these two letters to Helmholtz, we can see Hertz’s 
conceptual shift, from the wire waves of November 1887 to the air waves of March 
1888” (Baird et al., pp. 74-75).

In [5] Hertz shows that electric waves, like light waves, not only can be reflected 
but also exhibit the properties of interference and polarization. “In the paper 
‘On electric radiation,’ which Hertz regarded as a ‘natural end’ of this series of 
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researches, he reported that his experiments had removed ‘any doubt as to the 
identity of light, radiant heat, and electromagnetic wave motion’: electric rays are 
light rays of long wavelength” (Jungnickel & McCormmach, p. 88).

Paper [6] contains an important theoretical contribution by Hertz, his 
introduction of the retarded potential. This allowed him to derive Maxwell’s 
equations independently in a manner quite distinct from Maxwell’s. This paper 
also contains some beautiful diagrams illustrating the electric field outside his 
dipole antenna, and clearly illustrating how some of the energy escapes into space 
as an electric wave. “In one of the later papers, ‘The forces of electric oscillations, 
treated according to Maxwell’s theories,’ Hertz concluded that Maxwell’s theory 
explains all the facts he had investigated and is superior to all of the other 
theories … His theoretical orientation was now firmly Maxwell’s, for he viewed 
the production of electric waves as owing not only to the source but also to the 
condition of the surrounding space, the seat of the electromagnetic energy. By 
means of great parabolic mirrors, lenses, gratings and prisms, he showed that the 
electric force exhibits all of the main properties of light waves” (ibid., pp. 87-88). 

The last paper [7] describes Hertz’s further investigations into the propagation of 
electric waves through wires. To his surprise, he found the velocity of propagation 
to be different from the speed in air, contrary to the predictions of theory. Hertz 
called on others to repeat the experiments and verify or refute his results. In 
Dublin, George Francis Fitzgerald and associates repeated and elaborated Hertz’s 
experimental discoveries. For wire transmission, their results were in good 
agreement with those of Hertz. On the other hand Édouard Sarasin and Lucien 
de la Rive of Geneva obtained the results required by theory. 

Born in Hamburg, Heinrich Hertz (1857-94) came from a prosperous and 
cultured family. After serving in the military for a year (1876-77), Hertz spent a 
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year at the University of Münich, where he decided to embark upon an academic 
career. In 1880 Hertz received a Ph.D. at the University of Berlin working under 
Helmholtz. He then taught at the University of Kiel and in 1885 was appointed 
professor of physics at the University of Bonn. His untimely death from blood 
poisoning, which occurred after several years of poor health, cut short a brilliant 
career. Hertz died before Guglielmo Marconi made the use of radio waves a 
practical means of communication. In his honour the unit of frequency is now 
called the hertz.

Hertz’s papers on electromagnetism were published in book form as 
Untersuchungen ueber die Ausbreitung der elektrischen Kraft (Leipzig: Barth, 
1892). The offprints offered here are Nos. 2, 6, 5, 8, 11, 9 and 10, respectively, in 
that collection.

Dibner 71; Honeyman 1668 (for the collected edition); Sparrow, Milestones, p. 
47; PMM 377. Baird, Hughes & Nordmann, Heinrich Hertz: Classical Physicist, 
Modern Philosopher, 2013. Jungnickel & McCormmach, Intellectual Mastery of 
Nature. Theoretical Physics from Ohm to Einstein, Vol. 2, 1986.
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HILBERT’S PROGRAM FOR THE 
FOUNDATION OF MATHEMATICS

HILBERT, David. ‘Neubegründung der Mathematik,’ pp. 157-177 in Abhandlun-
gen aus dem mathematischen Seminar der Hamburgischen Universität, 1. Band, 2. 
Heft. Hamburg: Verlag des mathematischen Seminars, 1922.

$1,250

8vo (240 x 162 mm), pp. 99-177, [1], 4, uncut and mostly unopened. Original print-
ed wrappers, spine slightly sunned.

First edition, journal issue in the original printed wrappers, and a copy with 
excellent provenance, of the first major paper in the development of the ‘Hilbert 
programme,’ in which  Hilbert put forward his proposal for a  foundation for 
all of mathematics based on axiomatics and logic. Hilbert’s programme “was a 
proposed solution to the foundational crisis of mathematics, when early attempts 
to clarify the foundations of mathematics were found to suffer from paradoxes and 
inconsistencies. As a solution, Hilbert proposed to ground all existing theories 
to a finite, complete set of axioms, and provide a proof that these axioms were 
consistent. Hilbert proposed that the consistency of more complicated systems, 
such as real analysis, could be proven in terms of simpler systems. Ultimately, 
the consistency of all of mathematics could be reduced to basic arithmetic” 
(Wikipedia). “According to Reid [Hilbert-Courant (1970), p. 154), Hilbert was 
becoming, in the early 1920s, ‘increasingly alarmed by the gains that Brouwer’s 
conception of mathematics was making among the younger mathematicians. To 
him, the program of the Intuitionists represented quite simply a clear and present 

HILBERT, David.



danger to mathematics’. Hilbert interpreted intuitionism as requiring that all 
pure existence proofs, a large part of analysis and Cantor’s theory of infinite sets 
would have to be given up. In particular, this would rebut some of Hilbert’s own 
important contributions to pure mathematics. Hilbert was especially disturbed 
by the fact that Weyl, who was his most distinguished former student, accepted 
the radical views of Brouwer, who aroused in Hilbert the memory of Kronecker. 
In Reid’s words, ‘At a meeting in Hamburg in 1922 he came roaring back to the 
defence of mathematics’ (Reid, p. 155). This was the first public presentation of 
Hilbert’s program” (Raatikainen, p. 158). Hilbert’s Hamburg lecture was published 
as the present paper. In it, “Hilbert sets out the basic ideas of his proof theory, 
describes a simple formal axiom system for a fragment of arithmetic, and proves 
its consistency; he also lays the groundwork for his later investigations of the 
foundations of set theory and real analysis ... Hilbert makes no attempt to supply 
a consistency proof for the transfinite part of his theory” (Ewald, p. 1116).

Provenance: Heinrich Behmann (1891-1970) (pencil signature on upper wrapper). 
Behmann studied mathematics in Tübingen, Leipzig and Göttingen. Hilbert 
supervised the preparation of his doctoral thesis at Göttingen, Die Antinomie der 
transfiniten Zahl und ihre Auflösung durch die Theorie von Russell und Whitehead 
(1918). This dissertation was primarily intended to give a clear exposition of the 
solution to the antinomies found in Whitehead & Russell’s Principia Mathematica. 
Behmann continued to perform research in the field of set theory and predicate 
logic, proving in 1922 that the monadic predicate calculus is decidable. In 1938 
he obtained a professorial chair in mathematics at Halle. See Mancosu, ‘Between 
Russell and Hilbert: Behmann on the foundations of mathematics,’ Bulletin of 
Symbolic Logic 5 (1999), 303-330.

Hilbert’s work on the foundations of mathematics has its roots in his work on 
geometry of the 1890s, culminating in his influential Grundlagen der Geometrie 

HILBERT, David.

(1899). Hilbert believed that the proper way to develop any scientific subject 
rigorously required an axiomatic approach, which would enable the theory to 
be developed independently of any need for intuition, and would facilitate an 
analysis of the logical relationships between the basic concepts and the axioms. 
Hilbert realized that the most important questions are the independence and 
the consistency of the axioms. For the axioms of geometry, consistency can be 
proved by providing an interpretation of the system in the real plane, and thus the 
consistency of geometry is reduced to the consistency of analysis. The foundation 
of analysis, of course, itself requires an axiomatization and a consistency proof. 
Hilbert provided such an axiomatization in Über den Zahlbegriff (1900), but 
it became clear very quickly that the consistency of analysis faced significant 
difficulties, in particular because the favoured way of providing a foundation for 
analysis in Dedekind’s work relied on dubious assumptions akin to those that lead 
to the paradoxes of set theory. Hilbert thus realized that a direct consistency proof 
of analysis, i.e., one not based on reduction to another theory, was needed. He 
proposed the problem of finding such a proof as the second of his 23 mathematical 
problems in his address to the International Congress of Mathematicians in 1900 
and presented a sketch of such a proof in his Heidelberg talk Über die Grundlagen 
der Logik und der Arithmetik in 1904, but further progress was delayed because of 
the lack of a properly worked-out logical formalism.

The publication of Russell and Whitehead’s Principia Mathematica provided the 
required logical basis for a renewed attack on foundational issues. “In the interval 
since [Über die Grundlagen der Logik und der Arithmetik], numerous important 
developments had taken place in the foundations of mathematics. Hilbert’s 
younger Göttingen colleague Ernst Zermelo had proved his well-ordering 
theorem. The paradoxes of set theory had become widely known, and had led 
to spirited discussions between Russell, Poincare, Richard, Konig, Zermelo, and 
Peano. Hilbert’s axiomatic method, first employed in his Grundlagen der Geometrie 



(1899), had been applied in numerous investigations in geometry, algebra, and 
mathematical physics. Poincare published his criticisms of [Über die Grundlagen 
der Logik und der Arithmetik] and of the logicists; Zermelo supplied axioms for the 
set theory of Dedekind and Cantor; Whitehead and Russell published Principia 
Mathematica; Brouwer began to develop his intuitionistic mathematics; Hilbert’s 
gifted former pupil, Hermann Weyl, was drawn to Brouwer’s ideas” (Ewald, pp. 
1105-1106).

In September 1917, Hilbert delivered an address to the Swiss Mathematical Society 
entitled Axiomatische Denken, his first published contribution to mathematical 
foundations since 1905. In it, he again emphasizes the requirement of consistency 
proofs for axiomatic systems, and states his belief that this had been achieved 
by Russell’s work in Principia. Nevertheless, other fundamental problems of 
axiomatics remained unsolved, including the problem of the “decidability of 
every mathematical question,” which also traces back to Hilbert’s 1900 address.

Within the next few years, however, Hilbert came to reject Russell’s logicistic 
solution to the consistency problem for arithmetic. At the same time, Brouwer’s 
intuitionistic mathematics gained currency. In particular, Hilbert’s former 
student Hermann Weyl converted to intuitionism. Weyl’s paper Über die neue 
Grundlagenkrise der Mathematik (1921) was answered by Hilbert in three talks 
in Hamburg delivered on July 25-27, 1921, published as  Neubegründung der 
Mathematik. 

“The first period [of Hilbert’s work on the foundations of mathematics] is taken 
to extend from 1900 to 1905, the second from 1922 to 1931. The periods are 
marked by the dates of outstanding publications. Hilbert published in 1900 and 
1905 respectively Über den Zahlbegriff and Über die Grundlagen der Logik und der 
Arithmetik … the considerations of the latter paper were taken up around 1921, 
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were quickly expanded into the proof theoretic program, and were exposed first 
in 1922 through Hilbert’s Neubegründung der Mathematik” (Sieg, p. 3).

In the Neubegründung Hilbert attempts to rebut the critiques of classical 
mathematics by Brouwer and Weyl and to clear away the doubts engendered by 
the paradoxes they raised. “At the level of metamathematics, Hilbert adopted the 
intuitionistic criticisms of infinitary mathematics, and sought to use only reasoning 
that was intuitionistically acceptable; indeed, at this level, Hilbert’s finitism went 
further than that of Brouwer himself. The disagreements stemmed rather from a 
difference of opinion about what constitutes a foundation for mathematics, and 
concerned, first, the desirability of formalized mathematics uberhaupt; second, 
the usefulness, legitimacy, and mathematical interest of the classical, infinitary 
modes of inference expressed in Hilbert’s formal system.

“In contrast to [Über die Grundlagen der Logik und der Arithmetik], the present 
essay now draws a clear distinction between the logico-mathematical formalism 
and the inhaltliche metamathematical reasonings about it. This distinction allows 
Hilbert to answer the charge of circularity raised by Poincare … [who] had 
charged that Hilbert needed to presuppose the truth of mathematical induction 
in order to prove its consistency; but Hilbert can now distinguish (as he does in 
§31) between the strong principle of complete induction expressed in the formal 
language and the weaker principle used in the metalanguage” (ibid.).

Ewald, From Kant to Hilbert, Vol. II, Oxford, 1996; Raatikainen, ‘Hilbert’s Program 
revisited,’ Synthese 137 (2003), pp. 157-177. Sieg, ‘Hilbert’s Programs: 1917-1922,’ 
Bulletin of Symbolic Logic 5 (1999), pp. 1-44.
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SOME OF THE EARLIEST PRINTED 
ANATOMICAL ILLUSTRATIONS

HUNDT, Magnus. Antropologium de hominis dignitate, natura et proprietatibus, 
de elementis, partibus et membris humani corporis. Leipzig: Wolfgang Stöckel, 
1507.

$165,000

4to (205 x 153 mm), 120 leaves, unpaginated. Contemporary German blind-tooled 
half pigskin over wooden boards, numerous annotations throughout the text. Some 
gatherings with light toning, but in general a beautiful copy. Highly scarce in such 
fine condition.

An outstanding copy, in untouched contemporary binding from the collection of 
Jean Blondelet, of one of the earliest works with anatomical illustrations, “includes 
the first illustrations of the viscera in a printed book” (GM). “Hundt’s best-known 
work, Antropologia de hominis dignitate, natura et proprietatibus de elementis, 
published in 1501, is one of the three or four earliest printed books to include 
anatomic illustrations. At one time, Hundt’s work was looked upon as the oldest 
printed book with original anatomic illustrations, but that is no longer believed 
to be the case. His Antorpologia included five full-page woodcuts, including two 
identical reproductions of the human head, which appeared on the back of the 
title page as well as later in the book. The woodcuts are crude and schematic and 
not done from nature, and although one of the woodcuts pictures the entire body 
and lists the various external parts, there is no attempt to equate the anatomical 
term with the actual representation. There is also a full-page woodcut of a hand 
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with chiromantic markings, and of the internal organs of the throat and abdomen. 
Smaller woodcuts, including plates of the stomach, intestines, and cranium, are 
inserted throughout the text. The work gives a clear idea of anatomy prior to 
the work of Berengario da Carpi, and can be regarded as typifying late-fifteenth-
century concepts. Hundt held that the stars exert more influence on the human 
body than on other composites of elements, and his book includes generalizations 
about human physiognomy and chiromancy as well as anatomy. He subscribed to 
the notion of the seven-celled uterus, which he apparently derived from Galen” 
(DSB). This is a very rare book on the market: APPC/RBH lists just the Norman 
copy, Christie’s 1998 $85,000 modern binding; Swann Galleries 1979 $8,600 
modern binding; Sotheby’s 1974 $6,000 disbound. 

Provenance: Rear paste-down with the marking of Blondelet, and with his 
preferred custom morocco box by Duval. Numerous contemporary annotations 
throughout. “Jean Blondelet was probably the greatest, but least known, French 
collector of rare medical and scientific books in the 20th century” (Jeremy 
Norman).   

“Hundt’s best-known work, Antropologia de hominis dignitate, natura et 
proprietatibus de elementis, published in 1501, is one of the three or four earliest 
printed books to include anatomic illustrations. At one time, Hundt’s work was 
looked upon as the oldest printed book with original anatomic illustrations, but 
that is no longer believed to be the case. His Antropologia included five full-page 
woodcuts, including two identical reproductions of the human head, which 
appeared on the back of the title page as well as later in the book. The woodcuts 
are crude and schematic and not done from nature, and although one of the 
woodcuts pictures the entire body and lists the various external parts, there is 
no attempt to equate the anatomical term with the actual representation. There 
is also a full-page woodcut of a hand with chiromantic markings, and of the 

HUNDT, Magnus.



internal organs of the throat and abdomen. Smaller woodcuts, including plates 
of the stomach, intestines, and cranium, are inserted throughout the text. The 
work gives a clear idea of anatomy prior to the work of Berengario da Carpi, 
and can be regarded as typifying late-fifteenth-century concepts. Hundt held that 
the stars exert more influence on the human body than on other composites of 
elements, and his book includes generalizations about human physiognomy and 
chiromancy as well as anatomy. He subscribed to the notion of the seven-celled 
uterus, which he apparently derived from Galen” (DSB).  

“The Antropologium … contains four large and several small woodcuts, which 
are accepted among the earliest of anatomical illustrations that are a little more 
than schematic representation. His work contains illustrations of the internal 
organs but without images of bones or muscles and this work seems to be the 
most comprehensive representation of all the internal parts up to that time. One 
of those illustrations shows that trachea on the right side of the neck, passing 
downward to the lungs; on the left side the oesophagus is represented. In the 
thorax are seen the lungs and the heart. The pericardium has been opened and 
the stomach and intestines are figured crudely. In addition, a figure of the uterus 
depicting the anatomy of the uterus with seven cells (Figura matricis) is noted. 
These illustrations also give a clear idea of pre-Berengarian anatomy and seem to 
be the aggregate of the views entertained in the fifteenth century as to the position 
and shape of the anatomic parts” (Gurunluoglu et al, ‘The history and illustration 
of anatomy in the Middle Ages,’ Journal of Medical Biography 21 (2013), 219-229). 

The representation of the head was reproduced in several later works. “It is 
believed that Hundt’s scheme had its origin in the 1493 edition of Albertus 
Magnus’ Philosophia naturalis. A similar representation can be found in the 
Margarita philosophica (1503) written by Gregor Reisch (ca. 1470-1523) … The 
figure was subsequently reproduced in a number of medical texts published in the 
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sixteenth century, such as Giovanni Battista Porta’s (ca. 1535-1615) De humani 
Physiognomia, published in Padua in 1593 … In the later sixteenth century, a 
notable figure is Otto Casmann (d. 1607), also known as Otto Casmannus, a 
physician-theologian from Stade, near Hamburg in Lower Saxony, who published 
a number of texts such as Psycholgia anthropologica (1594) and Somatologia 
(1598), which appear to be elaborations of the “anthropology” of Hundt” (History 
of Physical Anthropology, Vol. 1, F. Spencer (ed.) (1997), p. 425).

“Hundt’s Antropologium discussed anatomy and physiology in their premodern 
forms as well as the religious and philosophical aspects of humans. Thomas 
Bendyshe (1865) called the Antropolgium “a purely anatomical work”, and Joseph 
Barnard Davis (1868) added that it was “ornamented with rude woodcuts, 
depicting gross inaccuracies”. But this misrepresented Hundt’s holistic attempt 
to explain the dual nature of humans (body and soul) from both an anatomical 
and a religious perspective. Convinced that humans were created in the image 
of God (Homo est dei imago secundum animam), Hundt regarded the spiritual 
component to be more important than the material one. He wanted to show 
people their dignity, as indicated in his book’s title, by expanding on earlier views 
of humans at an intersection between the creator and the creation (Homo est dei 
et mundi nodus)” (H. F. Vermeulen, Before Boas: The Genesis of Ethnography and 
Ethnology in the German Enlightenment (2015), p. 360). 

Magnus Hundt was born at Magdeburg in 1449 and died in Meissen in 1519. He 
was a renowned German theologian, physician and philosopher, and is generally 
regarded, jointly with Otto Casmann, as one of the founders of contemporary 
anthropology. In fact, the term was jointly coined and in due course popularized 
by both of them. Starting his studies at the age of 33 in Leipzig, Hundt received his 
Baccalaureate two years later. In 1487, the year he received an advanced degree, 
he was appointed Dean of the Faculty of Arts. Later in his illustrious career he was 
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given the post of Rector at the University, and is also said to have served as the 
personal physician for Count Joachimsthal. Nevertheless, his personal interests 
went far beyond medicine. Thus, he earned a doctorate degree in theology in 1510 
and consequently occupied a chair in this subject at the University of Meissen, a 
location to which the University of Leipzig was relocated after the plague.

Hundt’s Antropologium is here bound with:

PINDER [or BINDER], Ulrich. Epiphanie medicorum. Speculum videndi urinas 
hominum. Clavis aperiendi portas pulsuum. Berillus discernendi causas & 
differentias febrium. [Nuremberg: Friedrich Peypus? for the author, 1506].  

First edition, privately printed at the author’s press. “The first and longest of 
Binder’s three medical works in this collection treats of the practice of uroscopy, 
the diagnosis of illness by examination of the color and consistency of a patient’s 
urine. The full-page woodcut preceding the work shows a uroscopic consultation, 
and is surrounded by a border of urine glasses. The remaining treatises deal with 
the movement of the heart and pulse, and with various types of fever. Durling 
states that Epiphanie medicorum was printed in the author’s home in Nuremberg 
by the so-called ‘Printer of the Sodalitas Celtica,’ tentatively identified as Friedrich 
Peypus.   

A native of Nordlingen, Pinder practiced medicine there from 1484-1489, 
before becoming in turn physician to the Elector Frederick of Saxony, and, in 
1493, physician to the City of Nuremberg. This diagnostic treatise for the use of 
physicians, divided into three sections treating uroscopy, analysis of the pulse, and 
the various types of fever, was printed on a press that Pinder had installed in his 
house in 1505, probably by his future son-in-law Friedrich Peypus, who printed 
at least 11 editions there between 1505 and 1513, mostly of Pinder’s works. The 
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types are those of the Printer of the Sodalitas Celtica, with whom Peypus may 
have learned printing. In 1515 Peypus moved the press - apparently part of his 
wife’s dowry - to a new address; he remained active until 1534 (cf. Benzing pp. 
332-333, nos. 12 and 15). The volume also includes Gilles de Corbeil’s Carmina de 
urinarum judiciis, but omits the epilogue found in Choulant’s edition of that text. 
“Pinder’s edition is not listed in Choulant’s bibliography of printed editions of 
Gilles, and contains a number of variant readings not recorded by him” (Durling).

[Hundt:] Norman 1115; Garrison-Morton 363.3; Stillwell 664; Flamm 15; 
Choulant-Frank pp. 125-126; Wellcome 3362a (lacking last 4ff).
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PMM 406 - “ONE OF THE MOST 
BEAUTIFUL DISCOVERIES IN PHYSICS” 
(EINSTEIN)

LAUE, Max von, Walter FRIEDRICH & Paul KNIPPING. “Interferenz-Er-
scheinungen bei Röntgenstrahlen.” - “Eine quantitative Prüfung der Theorie für den 
Interferenz-Erscheinungen bei Röntgenstrahlen.”  Offprint (containing both papers) 
from the Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften 
Mathematisch-physikalische Klasse  (1912). Münich: F. Straub for the Verlag der 
Königlich Bayerischen Akademie der Wissenschaften, 1912.

$32,500

Large 12mo (220 x 144 mm), pp. 303-322 & 363-373, with three line block diagrams 
in text and five collotype plates. Stapled in original printed green wrappers, a very 
fine copy. Preserved in a clamshell cloth box.

First edition, very rare offprint issue, of Laue’s Nobel Prize-winning report of 
“one of the most beautiful discoveries in physics” (Einstein). X-rays had been in 
wide use since their discovery in 1895 but their exact nature as electromagnetic 
waves of short wavelength was first elucidated by Laue and his collaborators in 
the present papers. Laue (1879-1960) had moved in 1909 from Berlin (where he 
was Planck’s assistant) to Ludwig Maximillians University in Münich, where he 
was Arnold Sommerfeld’s Privatdozent. In the spring of 1912 he was asked by 
Sommerfeld’s doctoral student Paul Ewald a question about the arrangement of 
atoms in a crystal. In attempting to answer this question “Laue had the crucial 
idea of sending X-rays through crystals. At this time scientists were very far from 
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having proven the supposition that the radiation that Röntgen had discovered 
in 1895 actually consisted of very short electromagnetic waves. Similarly, the 
physical composition of crystals was in dispute, although it was frequently stated 
that a regular structure of atoms was the characteristic property of crystals. Laue 
argued that if these suppositions were correct, then the behavior of X-radiation 
upon penetrating a crystal should be approximately the same as that of light 
upon striking a diffraction grating” (DSB), an instrument used for measuring 
the wavelength of light, inapplicable to X-rays because their wavelength is too 
short. Sommerfeld was initially skeptical but Laue persisted, enlisting the help 
of Sommerfeld’s experimental assistant Walter Friedrich (b. 1883) in his spare 
time as well as that of the doctoral student Paul Knipping. On April 12, 1912, 
Friedrich and Knipping succeeded in producing a regular pattern of dark spots 
on a photographic plate placed behind a copper sulphate crystal which had 
been bombarded with X-rays. Laue’s second paper contains his complicated 
mathematical explanation of the phenomenon. “The awarding of the Nobel Prize 
in physics for 1914 to Laue indicated the significance of the discovery that Albert 
Einstein called ‘one of the most beautiful in physics’. Subsequently it was possible 
to investigate X-radiation itself by means of wavelength determinations as well as 
to study the structure of the irradiated material. In the truest sense of the word 
scientists began to cast light on the structure of matter” (DSB). The following year 
the Prize was granted to the father and son team W. H. and W. L. Bragg for their 
exploration of crystal structure using X-rays. ABPC/RBH lists three other copies 
of this offprint (Christie’s, 4 October 2002, lot 151, $5736; Sotheby’s, 11 January 
2001, lot 333, $10,200; Christie’s 29 October 1998, lot 1161, $16,100).

In 1912, “the nature of the X rays discovered by Röntgen in 1895 was not known. 
Röntgen himself conjectured that they might be longitudinal ether waves as 
opposed to the transverse ones, the electromagnetic waves found by Hertz. Since 
in Röntgen’s original experiment the X-rays originated from the point where 

cathode rays, i.e., electrons, hit matter, Wiechert and also Stokes suggested already 
in 1896 that X-rays were emitted by electrons while the latter were decelerated. In 
Maxwell’s theory an electric charge with a velocity, which is not constant, emits 
electromagnetic waves. In the Hertzian dipole antenna the charges oscillate to 
and fro. In a Röntgen tube electrons lose their velocity hitting a piece of matter. 
The fact that interference effects, characteristic of all waves, in particular, light 
and Hertzian waves, were not observed for X-rays, did not preclude that they were 
electromagnetic waves. Their wavelength might be too small for the detection of 
interference …

“The nature of X-rays, homogeneous or heterogeneous, remained a mystery. They 
could be understood as electromagnetic waves of short wavelengths or as new 
neutral particles. The former standpoint was taken, for instance, by Barkla, the 
latter by William Henry Bragg. One of Bragg’s arguments ran like this: X-rays, 
produced by electrons falling on matter, fly more or less in the same direction 
as the incident electrons. That is easily understood if one assumes them to be 
particles. The production of X-rays can then be seen as a collision process, just 
as one billiard ball hitting another. For some time the two scientists fought out 
the Barkla–Bragg controversy in the columns of Nature. Sommerfeld showed that, 
contrary to the expectations of Bragg and others, electromagnetic radiation is 
emitted mostly in forward direction if a fast electron suffers a sudden deceleration. 
The German term bremsstrahlung [breaking radiation] is still used commonly in 
the literature.

“It was the work of Laue and the experiment done by Friedrich and Knipping 
on his suggestion that cleared up the nature of X-rays once and for all and that, 
moreover, beautifully demonstrated that crystals are composed of atoms arranged 
in a regular lattice. Laue had studied mathematics and physics in Strasbourg, 
Göttingen, Münich, and Berlin, where in 1903 he took his Ph.D. with a thesis 
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under Planck. Feeling that he still had to continue his studies he went for another 
two years to Göttingen. In 1905 Planck offered him a position as his assistant. 
Laue worked with Planck on the latter’s speciality, the entropy of radiation. In the 
autumn of 1905 Planck gave a talk in the Berlin Physics Colloquium on Einstein’s 
first paper The Electrodynamics of Moving Bodies. Laue was deeply impressed. In 
1906, when on a mountaineering trip in Switzerland, as one of the first (possibly 
the very first) visitor from abroad, he looked up Einstein in the patent office in 
Bern. In 1907 he published a paper in which he showed that classic experiment 
by Fizeau, who had measured the velocity of light in a moving liquid, was in 
accordance with Einstein’s theory. Laue became a Privatdozent in Berlin and, also 
in that capacity, moved to Münich University in 1909. In 1910 he wrote the first 
book on the theory of relativity …

“The towering figures in Münich were Röntgen (who, however, took only little 
part in research any more) and Sommerfeld. Early in 1912 Ewald, then a Ph.D. 
student of Sommerfeld, looked up Laue in his flat. Sommerfeld had asked him to 
study theoretically the behaviour of light waves in a spatial lattice of polarizable 
atoms. Laue could not help with the theory but it occurred to him that possibly 
a similar problem could be studied experimentally if one assumed that a crystal 
was a regular spatial lattice of atoms and if one passed X-rays through a crystal. 
(It had been conjectured in the nineteenth century, in particular by Bravais, that 
the regular shape of a crystal is due to the underlying regular lattice of atoms of 
which the crystal is composed. But that was a mere hypothesis and not widely 
discussed.) Assuming the wavelength of X-rays to be on the order of the distance 
between neighbouring atoms, one might be able to see interference effects. He 
mentioned this idea to Ewald and it soon got around in the closely-knit group of 
young physicists in Münich. Soon Friedrich, who had just obtained his Ph.D. with 
Röntgen and now was Sommerfeld’s assistant, became interested. Sommerfeld 
had to be convinced that the experiment was important enough for Friedrich 
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to start it right away in spite of other assignments. Knipping, a Ph.D. student of 
Röntgen, joined in the effort.

“Friedrich and Knipping sent a collimated beam of X-rays, 3 mm wide, onto 
a crystal of copper sulphate and placed a photographic plate at some distance 
behind the crystal. They observed a dark spot, where the undiffracted beam hit 
the plate. That spot was surrounded by a more or less regular pattern of further 
spots, which they attributed to diffraction by the crystal lattice. Only after Laue 
saw the plate did he start in earnest to analyse the problem of diffraction by 
a spatial lattice. Later he reminisced: ‘In deep thought I went home by way of 
Leopoldstrasse after Friedrich had shown me the picture. And already near my 
flat, Bismarckstrasse 22, in front of the house Siegfriedstrasse 10, the thought 
came for the mathematical theory of the phenomenon.’

“Once the idea had come, the rest was simple. Laue advanced in three steps. First 
he recalled the laws of diffraction of light by a one-dimensional lattice or grid. If 
white light shines perpendicularly onto a grid made of fine wires, whose distance 
is on the order of the wavelength of this light, then on a screen behind the grid 
there will be a line of white light in the forward direction and a repetition of 
rainbow-like spectra to the left and to the right. If monochromatic light is used, 
there will be a series of regularly placed sharp lines. This is due to the fact that 
for a given wavelength only under certain angles light from equivalent points in 
the grid interferes constructively (i.e., has a phase difference corresponding to an 
integer number of wavelengths). He then turned to a two-dimensional lattice by 
replacing the grid by a mesh. Now two such conditions have to be met. Instead 
of a line pattern only a point pattern is observed for monochromatic light. For 
white light it is a pattern of patches each dis- playing side by side the colours of 
the rainbow. (The reader can easily do the experiment by looking at a street light 
through the cloth of her or his umbrella at night.) Up to here all was well known. 

But now Laue found that for a three- dimensional lattice a third condition had to 
be met. The spots are characterized by two angles (diffraction in horizontal and 
vertical direction). A third condition means that only a small number of spots is 
formed and only for certain wavelengths. Laue, of course, wrote his conditions in 
mathematical form, later called the Laue equations.

“Friedrich and Knipping improved their apparatus. They reduced the beam 
diameter, shielded their set-up by a lead box from stray radiation and, for the 
same reason, allowed the undiffracted beam to leave it through a lead tube. 
Instead of the original copper sulphate they used a carefully polished crystal 
of zinc blende. Also, they took great care to make the symmetry axis of the 
crystal coincide with the beam axis. As a result, they obtained photographs with 
beautifully symmetric sharp spots fitting Laue’s theory. Such a photograph is now 
called a Laue diagram and the process leading to it is called Laue diffraction. A 
joint paper was written [‘Interferenz-Erscheinungen bei Röntgenstrahlen’] with 
the theoretical part signed by Laue and the experimental part signed by Friedrich 
and Knipping and communicated by Sommerfeld on 8 June 1912 to the Bavarian 
Academy of Science. That same day Laue gave a talk on a session of the German 
Physical Society in Berlin ‘at the same spot’, as he proudly remembered, ‘where in 
December 1900 Planck had first talked about his radiation law and the quantum 
theory’. Laue, Friedrich and Knipping assumed that the zinc blende crystal had 
a simple cubic lattice with zinc and sulphur atoms alternating on the corners of 
cubes of side length a. According to Laue’s theory, the radiation responsible for 
one point in the diagram is monochromatic. All the points in the Laue diagram 
of zinc blende corresponded to just five different wavelengths. In July 1912 an 
extended numerical analysis of the diagram [‘Eine quantitative Prüfung der 
Theorie für den Interferenz-Erscheinungen bei Röntgenstrahlen’] was published 
by Laue alone. He found that all the points in the diagram were explained by his 
theory but that not in every position in which his theory allowed for a point such 
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a point was observed. He therefore assumed that the radiation emitted by the 
X-ray tube was a mixture of five monochromatic radiations, each with its own 
wave-length” (Brandt, pp. 80-83).

The two papers were first printed in 1912 in the Sitzungsberichte der Königlich 
Bayerischen Akademie der Wissenschaften; the offered offprint contains both 
papers. The two papers were reprinted the following year in Annalen der Physik 
(4 Folge, Bd. 41, pp. 971-988 & 989-1002). 

PMM 406a; Norman 1283. Brandt, The Harvest of a Century, 2009.
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THE FOUNDATION OF THE 
ELECTRONIC COMPUTER INDUSTRY

LEIBNIZ, Gottfried Wilhelm. ‘Novelle Arithmetique binaire’. [With:]  ‘Explica-
tion de l’Arithmetique binaire, qui se sert des seuls caracteres 0 & 1; avec des re-
marques sur son utilité, & sue ce qu’elle donne le sens des anciens figues Chinoises de 
Fohy’. Pages 58-63 (Histoires) and 85-9 (Mémoires) in Histoire de l’Académie Royale 
des Sciences Année MDCCIII. Avec les Mémoires de Mathématiques & de Physique, 
pour la même Année. Paris: Boudot, 1705.

$19,500

4to (243 x 182 mm), pp. [x], 148, 467, [2], with engraved frontispiece and 12 en-
graved plates (10 folding). Contemporary calf with richly gilt spine, hinges and cap-
itals with some very well done leather restoration.

First edition, first issue, of Leibniz’s invention of binary arithmetic, the foundation 
of the electronic computer industry. This is the second of Leibniz’s great trilogy of 
works on mathematics and computation, following Nova methodus pro maximis 
et minimis (1684), his independent invention of calculus, and preceding Brevis 
descriptio machinae arithmeticae (1710), his (decimal) mechanical calculating 
machine. “A dated manuscript by Gottfried Wilhelm Leibniz, preserved in the 
Niedersachsische Landesbibliothek, Hannover, ‘includes a brief discussion of the 
possibility of designing a mechanical binary calculator which would use moving 
balls to represent binary digits.’ Though Leibniz thought of the application of 
binary arithmetic to computing in 1679, the machine he outlined was never built, 
and he published nothing on the subject until [the offered work]” (Norman). 
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Leibniz viewed binary arithmetic less as a computational tool than as a means 
of discovering mathematical, philosophical and even theological truths. It was 
a candidate for the characteristica generalis, his long sought-for alphabet of 
human thought. With base 2 numeration Leibniz witnessed a confluence of 
several intellectual strands in his world view, including theological and mystical 
ideas of order, harmony and creation. ABPC/RBH list only one copy of this first 
issue (Zisska & Schauer, May 4, 2011, lot 461, €5,616). The copy of the extracted 
leaves sold at the Hans Merkle sale (Reiss, Auktion 85, October 15, 2002, lot 696) 
realized €6500.

“In the domain of mathematics, Leibniz regarded binary notation as intrinsically 
superior to decimal notation. Over and above this advantage, however, he believed 
that it contained the key to resolving both the problem of conceptual primitives and 
the problem of adequate characters. If it could be established, as Leibniz speculated 
from about 1679 onwards, that the only truly primitive concepts were those of 
God and Nothingness (or Being and Privation), then the symbols 1 and 0 would 
form the basis for an adequate characteristic, whose simplest signs would stand 
in an immediate relation to the two conceptual primitives” (Jolley, pp. 236-237).

“About this time [1679] Leibniz also outlined a design for a calculating machine 
to operate the four rules in binary arithmetic, though he recognised that the 
development of such a machine would not be easy. Owing to the great number 
of wheels needed, the problems related to friction and smooth movement already 
encountered with the ordinary calculating machine would be more serious, while 
the greatest difficulty would be the mechanical conversion of ordinary numbers 
into binary and the binary answers into ordinary numbers. Perhaps it was on 
account of these seemingly insuperable obstacles that Leibniz failed to mention 
the binary calculating machine in his correspondence. Concerning the ‘binary 
progression’ itself, he remarked to Tschirnhaus in 1682 that he anticipated from 

its use discoveries in number theory that other progressions could not reveal” 
(Aiton, p. 104).

“… in April [1697] he [Leibniz] edited a collection of letters and essays by 
members of the Jesuit mission in China, entitled Novissima Sinica … One of the 
copies of the Novissima Sinica that Leibniz sent to to Verjus [Antoine Verjus, the 
leader of the mission] came into the hands of Joachim Bouvet, a member of the 
Mission who had just returned home to Paris on leave. Bouvet wrote to Leibniz 
on 18 October 1697 expressing his commendation of the Novissima Sinica and 
giving him more recent news from China … In the years that followed , the 
correspondence with Bouvet proved to be of great importance in relation to the 
dissemination of Leibniz’s binary arithmetic” (ibid., pp. 213-4).

“In his reply of 2 December 1697 to Bouvet’s first letter, Leibniz described the 
nature of his own researches, in which he had shown by mathematics that the 
Cartesians did not have the true laws of nature. To arrive at these, he explained, it 
was necessary to suppose in nature not only matter but also force, and the forms 
or entelechies of the ancients were nothing other than forces. Bouvet, in his letter 
of 28 February 1698, written before his return to Peking, expressed the view that 
the ancient Chinese philosophy did not differ from that of Leibniz, for it supposed 
in nature only matter and movement, which was the same as form, or what 
Leibniz called force. The ancient Chinese philosophy, he added, was embodied 
in the hexagrams of the I ching, of which he had found the true meaning. In his 
view they represented in a very simple and natural manner the principles of all 
the sciences, or rather a complete system of a perfect metaphysics, of which the 
Chinese had lost the knowledge a long time before Confucius. It is in the ‘Great 
appendix’ of the I ching that the words ‘yin’ and ‘yang’ make their first appearance 
in philosophical terms, used to describe the fundamental forces of the universe, 
symbolising the broken and full lines of the trigrams and hexagrams” (ibid., p. 245).
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“Early in 1700 Leibniz was elected a foreign member of the reconstituted Royal 
Academy of Sciences in Paris. This brought him into correspondence with 
Fontenelle … In return for his election to the Academy, he contributed papers on 
the binary system of arithmetic [offered here]” (ibid., p. 218). 

“During his visit to Berlin in the summer of 1700, Leibniz evidently sought the 
collaboration of the Court mathematician Philippe Naudé in further researches 
on the binary system. For on his return from the conversations on Church 
reunion with Buchhaim in Vienna, he received a letter from Naudé containing 
tables of series of numbers in binary notation, including the natural numbers 
up to 1023. Thanking Naudé for the pains he had taken to compile these tables, 
Leibniz explained his intention to investigate the periods in the columns of the 
various series of numbers. For it was remarkable that series – such as the natural 
numbers, triples, squares, and figurate numbers generally – not only have periods 
in the columns but that in every case the intervals are the same, namely 2 in the 
units column, 4 in the twos column, 8 in the fours column, and so on. In the case 
of the triples, for example, the periods in the last three columns were 01, 0110 and 
00101101. Already he had noticed a good theorem: that the periods consisted of 
two halves in which the 0s and 1s were interchanged; but the general rule for the 
periods in successive columns had thus far eluded him …

“The possession of Naudé’s tables enabled Leibniz to compose his Essay d’une 
nouvelle science des nombres, which he sent from Wolfenbüttel on 26 February 
1701 to the Paris Academy of Sciences to mark his election as a foreign 
member. In his essay, and also in his letter to Fontenelle, he explained that the 
new system of arithmetic was not intended for practical calculation but rather 
for the development of number theory. To Fontenelle he remarked that, before 
publication, there was perhaps a need to add something more profound and he 
hoped that some young scholar might be stimulated to collaborate with him to this 
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end … Concerning his decision to communicate his binary system, although the 
applications had not been achieved, Leibniz explained [in a latter to L’Hospital] 
that, in view of his many commitments that prevented him from bringing his 
researches to completion, he feared that his continued silence might lead to the 
loss of an idea which seemed worthy of conservation. 

“Leibniz write to Bouvet on 15 February 1701, at the time he was compounding 
his essay for the Paris Academy, and it was therefore natural that he should 
describe for his correspondent the principles of his binary arithmetic, including 
the analogy of the formation of all the numbers from 0 to 1 with the creation of 
the world by God out of nothing. Bouvet immediately recognised the relationship 
between the hexagrams and the binary numbers and he communicated his 
discovery in a letter written in Peking on 4 November 1701. This reached Leibniz 
in Berlin, after a detour through England, on 1 April 1703. With the letter, Bouvet 
enclosed a woodcut of the arrangement of the hexagrams attributed to Fu-Hsi, the 
mythical founder of Chinese culture, which holds the key to the identification ...

“Leibniz accepted Bouvet’s discovery with great enthusiasm. Having no reason to 
doubt the antiquity of the Fu-Hsi arrangement of the hexagrams that Bouvet had 
sent him, he was evidently delighted that this figure – ‘one of the most ancient 
monuments of science’, as he described it – should have been found to be in 
agreement with his own binary arithmetic” (ibid., pp. 245-7). 

“Within a week of receiving Bouvet’s letter, Leibniz had communicated the 
discovery to his friend Carlo Mauritio Vota, the Confessor of the King of Poland, 
and sent to Abbe Bignoin for publication in the Memoires of the Paris Academy his 
Explication de l’Arithmetique binaire, qui se sert des seuls caracteres 0 & 1; avec des 
remarques sur son utilité, & sue ce qu’elle donne le sens des anciens figues Chinoises 
de Fohy. Ten days later he sent a brief account to Hans Sloane, the Secretary of the 

Royal Society” (ibid., p. 247).

“Owing to his separation from the real scholars of the time, who for political 
reasons shunned the Court circles on which he had to rely for his information, 
Bouvet had been mistaken in his belief in the antiquity of the Fu-Hsi arrangement 
of the hexagrams. For this order was the creation of Shao Yung, who lived in 
the eleventh century … In the I ching the hexagrams are arranged in a different 
order, attributed to King Wen (ca. 1050 BC) … This order lacks even a superficial 
resemblance to a number system.

“Bouvet’s great discovery, to which Leibniz gave hia enthisuasitc support, was 
therefore a misinterpretation based on bad Sinology. Generously but mistakenly, 
Leibniz had been willing to follow Bouvet in attributing his own invention to 
Fu-Hsi, thereby giving support to the myth that the ancient Chinese possessed 
advanced scientific knowledge which later generations had lost” (ibid., 247-8). 

Nevertheless, combinatorial aspects susceptible to binary interpretations do 
exist in the Figures of Fu-Hsi, as has been demonstrated by F. van der Blij of the 
Mathematical Institute at Utrecht.

The article ‘Nouvelle Arithmetique binaire’ in the Histoire part of this volume 
is unsigned, but is actually by Bernard Le Bovier de Fontenelle. His article 
constituted an editorial comment on the ‘Explication’ of Leibniz.

“Fontenelle pointed out that ten need not be the base of our arithmetic, and that 
indeed certain other bases would have advantages over it. Base 12, for example, 
would simplify dealings with certain fractions such as 1/3 and 1/4. He also noted 
that numbers have two sorts of properties, essential ones and those dependent 
on the manner of expressing them. As an example of the former he cited the 
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property that the sum of the first n odd numbers equals n2, and of the latter that 
a number divisible by 9 has a digit sum also divisible by 9. This same property 
would hold for 11 in the case of base 12. He reported that Leibniz had worked 
with the simplest of all possible bases, base two. This base was not recommended 
for common use because of the excessive length of its number representations, but 
Leibniz considered it particularly suitable for difficult research and as possessing 
advantages absent from other bases. Fontenelle reported further that Leibniz had 
communicated this binary arithmetic in 1702, but had asked that no mention of 
it be made in the Histoire until he could supply an application. This application 
eventually came forth in the binary interpretation of the Figures of Fohy. The rest 
of Fontenelle’s article is devoted to reporting that binary arithmetic was invented 
not only by Leibniz, but also by Professor Lagny at about the same time [i.e., 
Tomas Fantet de Lagny (1660-1734)]” (Glaser, p. 44).

Lagny “attempted to establish trigonometric tables through the use of transcription 
into binary arithmetic, which he termed ‘natural logarithm’ and the properties of 
which he discovered independently of Leibniz” (DSB). He “used binary arithmetic 
in his text Trigonométrie française ou reformée published in Rochefort in 1703” 
(MacTutor).

This volume of the Histoire de l’Académie Royale des Sciences was reissued at Paris 
in 1710 (this is the edition reproduced on Gallica), and later in octavo format at 
Amsterdam. 

Aiton. Leibniz: A Biography, 1985. Glaser, A History of Binary and Other Non-
Decimal Numeration, 1971. Jolley (ed.), Cambridge Companion to Leibniz, 1995. 
Van der Blij, ‘Combinatorial Aspects of the Hexagrams in the Chinese Book of 
Changes,’ Scripta Mathematica 28 (1967), pp. 37-49.
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GROLIER/HORBLIT 42 - A REWARD FOR 
DETERMINING LONGITUDE AT SEA

[LONGITUDE ACT]. An Act for Providing a Publick Reward for such Person or 
Persons as shall Discover the Longitude at Sea. London: Printed by John Baskett … 
And by the Assigns of Thomas Newcomb and Henry Hills, 1714.

$12,500

Folio (278 x 186 mm), pp. [ii], 355-357, [1, blank], title with woodcut royal arms, 
factotum initial opening text. Stitched.

First edition, and a fine copy, of the Act of 1714 establishing a reward for the 
discovery of a method of determining longitude at sea. “An  early example 
of  a  means  adopted by a government for encouraging scientific discovery  and 
progress” (Grolier/Horblit). John Harrison (1693-1776), among others, was so 
encouraged and eventually solved the longitude problem with the invention of 
his chronometer H4. “Harrison’s chronometer not only supplied navigators with 
a perfect instrument for observing the true geographical position at any moment 
during their voyage, but also laid the foundation for the compilation of exact charts 
of the deep seas and the coastal waters of me world … There has possibly been no 
advance of comparable importance in aids to navigation until the introduction 
of radar” (PMM 208). “The Act of 1714 constituted 24 Commissioners either by 
name or office; if five or more thought a longitude proposal promising, they could 
direct the Commissioners of the Navy to have their Treasurer issue up to £2000 
in total to conduct trials. After experiments were made, the Commissioners 
of the Longitude or ‘the major part of them’ were to determine whether the 
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tested proposal was ‘Practicable, and to what Degree of Exactness’. The Act set 
up a three-tiered reward system for methods which were deemed successful” 
(Baker). This and the ensuing longitude acts passed between 1714 and 1828 set 
a precedent for government funding and, within fifty years, also gave rise to a 
unique standing body, the Board of Longitude, that encouraged and helped to 
define British science and technology at large. Although it is its conflict with John 
Harrison, who claimed the prize, which now most characterizes the Board of 
Longitude, and Parliament’s longitude legislation, in the public mind, the Board 
involved itself in wide-ranging scientific, technological, and maritime activities 
– such as the annual publication of the Nautical Almanac, the improvement of 
diverse technologies, the establishment of observatories abroad, and voyages 
including those of Captain Cook and of Arctic exploration. The act was issued 
both separately, as here, and as part of the collected acts of Parliament for the 12th 
year of Queen Anne’s reign.

“The latitude at sea could easily be determined from the altitude of celestial bodies, 
but the early sailors had no way to measure the longitude, other than by estimating 
the number of miles sailed east or west, which was often little more than inspired 
guesswork. The lack of method was increasingly felt in the seventeenth century 
and was, in fact, the main reason for the founding of the Royal Observatory at 
Greenwich in 1675.

“Two particular incidents accelerated the founding of the Board [of Longitude]. In 
1707 a squadron under Sir Clowdisley Shovel ran aground off [the Isles of] Scilly 
with the loss of some 2,000 lives: Britain’s worst maritime disaster. Then in 1713 
the mathematicians William Whiston and Humphrey Ditton suggested a scheme 
for determining longitude by anchoring ships along the main sea-lanes and firing 
a shell timed to explode at a height of over a mile. The time between the flash 
and the corresponding sound would give the distance to any ship within range. 

“Although completely impractical it received widespread publicity and encouraged 
a petition to Parliament by several sea-captains and London merchants which 
suggested that Parliament should offer a prize for finding a solution. The 
government took this seriously and a Parliamentary committee was set up to 
report on the problem. Among others this included Isaac Newton, Edmond Halley 
and Samuel Clarke, and the committee recommended that a reward should be 
offered for finding longitude at sea.

“A Bill was presented in June 1714 ‘for Providing a Publick Reward for such Person 
or Persons as shall Discover the Longitude at Sea.’ It received the Royal Assent by 
Queen Anne on July 20, 1714, only 12 days before she died.

“The Act offered rewards of up to £20,000 for discovering longitude at sea to 
within certain limits of accuracy: £10,000 if accurate to one degree of the great 
circle (60 nautical miles), £15,000 if to 2/3° (40 nautical miles) and £20,000 if 
to 1/2° (30 nautical miles). This sum was unprecedented by the standard of the 
day. By comparison, the Astronomer Royal’s salary was originally only £100, 
rising to £300 under [Nevil] Maskelyne. It is estimated that £20,000 in 1714 is the 
equivalent of at least £1 million in the currency of the 1980s.

“Half the reward was to be paid if the method extended to 80 nautical miles 
from shore, the place of greatest danger, the other half if successful over a longer 
distance, such as the voyage to the West Indies. The method had to be ‘practicable 
and useful at sea,’ a vague term which was to be the subject of much controversy 
later.

“Small sums could be advanced towards schemes that seemed promising for 
further experimentation. If a method did not reach the listed limits of accuracy 
but was still considered to be useful, a smaller reward could be offered. These 
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rewards were open to people of all nationalities and many applicants came from 
overseas, especially from France and Spain, the other two leading seafaring 
nations of the day. The reward also stimulated mathematicians and astronomers 
the world over to work on the problem.

“The Longitude Act appointed a group of Commissioners who came to be known 
as the Board of Longitude. Their function was to consider the suitability of 
schemes and pass on their opinions to the government. They obviously had to be 
selected so that they were competent in dealing with such scientific and technical 
matters. They comprised admirals, the Master of Trinity House, the President of 
the Royal Society, the Astronomer Royal, professors at Oxford and Cambridge, 
and ten members of Parliament [the Astronomer Royal had the final say as to the 
suitability of schemes and instruments] …

“The basic theory behind discovering longitude is simplicity itself. As each 15 
degrees of longitude corresponds to a time difference of one hour, it is only 
necessary to compare the local time (using the Sun’s highest altitude to determine 
noon) with the time at Greenwich (or any other reference meridian). One thus 
had to have on board a timekeeper from which Greenwich time could be found 
to the requisite precision. The difficulty was to design such a chronometer which 
could keep time accurately over months on board ship, with extremes of heat and 
cold, damp or drought.

“The successful inventor was John Harrison, the man who solved the longitude 
problem and who eventually won the £20,000 prize. The early years of the Board 
were dominated by Harrison and his chronometers, his problems, the testing 
of the timekeepers and his struggle to obtain the reward. The earliest surviving 
confirmed minutes of 1737 open with the words ‘Mr John Harrison produced a 
new invented machine, in the nature of Clock Work, whereby he proposes to keep 
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time at sea with more exactness than by any other instrument or method hitherto 
contrived.’ The trials went on for decades, Harrison’s work being encouraged on 
many occasions by small payments from the Board.

“It was his fourth timekeeper (a large watch, called H4) which was taken on a trial 
to Jamaica and back in 1761-62. Although Harrison claimed that H4 more than 
complied with the 1714 Act, the Board disagreed and insisted on a second trial, in 
which H4 also performed very well.

“The Board was still not fully satisfied, half only of the reward was paid and on 
condition that Harrison disclosed the construction so that copies could be made. 
The first of these was built by Larcum Kendall (K1) and was sent with Captain 
Cook on his second voyage. Despite glowing praise from Cook, Harrison had 
to appeal to King George III before he was paid the full reward in 1772, at the 
age of 78. The often-heated exchanges between Harrison and the Board are well-
preserved in the archives.

“At the same time as the Board was dealing with Harrison, another method of 
finding longitude was being acquired. The Moon moves quite slowly across the 
background stars and its position can in theory be used as a means of finding 
Greenwich time. The difficulty here was that the Moon’s motions were not known 
sufficiently accurately for tables to be drawn up months or years in advance to 
determine longitude with sufficient precision.

“In 1755 the Board received accurate lunar tables from the German mathematician 
Tobias Meyer. They were derived from equations by Leonhard Euler and the 
observations of Mayer and James Bradley (Astronomer Royal 1742-62). These 
were improved by a second set of tables which Mayer bequeathed to the Board 
on his death in 1762. They allowed longitude to be found to within a few nautical 

miles and also permitted the position of the Moon to be calculated several years 
in advance.

“The Board recommended publication of an annual almanac giving the position 
of the Moon every three hours, and other information, from which longitude 
could be found. The Nautical Almanac was first published in 1766, for 1767, 
most of the planning being done by the Astronomer Royal, Nevil Maskelyne. 
The computations of tables and the printing on the Almanac remained a major 
interest of the Board …

“With the award of the main prize to Harrison and the foundation of the Nautical 
Almanac the Board had fulfilled its role under the 1714 Act. However, it was kept 
in being by a new Act of 1774 which moved the emphasis away from longitude to 
navigation in general. The scope of the Board became much wider. Improvements 
and refinements of navigational instruments were a main concern. Chronometers 
were improved by men such as Thomas Mudge, John Arnold and Thomas 
Earnshaw, and sextants were refined using an artificial horizon. Greater accuracy 
was achieved in the technique of ruling the scale divisions on instruments, notably 
by Jesse Ramsden.

“The Board also entered into such areas as the accurate measurement of ships’ 
tonnage, meteorology, magnetism and the production of accurate naval charts. It 
was mainly for the latter reason that the Board became increasingly linked with 
world exploration through the great voyages of discovery of the late 18th and early 
19th centuries … The explorations round Australia, New Zealand and the Pacific 
owed much to the Board, most notably the second and third voyages of Captain 
Cook … the Board in 1819 offered rewards for discovering the north-west passage 
from the Atlantic to the Pacific, or for progressing towards the North Pole … The 
last major project undertaken by the Board was the foundation of the observatory 
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at the Cape of Good Hope. Its aim was to increase the knowledge of the southern 
skies and improve navigation south of the equator. The first mention is at the 
Board meeting of 3 February, 1820 … By this time, though, the role of the Board 
was becoming even less well-defined and uncertain. It was increasingly linked 
with the pure astronomy at the Royal Observatory, Greenwich. The ardour of 
the great voyages of discovery had cooled … Areas of work into which the Board 
might have moved were taken over by two societies formed about this time, the 
Astronomical Society of London (later the Royal Astronomical Society) and the 
Royal Geographical Society. Its remaining responsibilities were subsumed into 
the work of the Royal Observatory …

“The Board of Longitude was finally dissolved on July 15, 1828 by Act of 
Parliament. It had been in existence 114 years. Nevertheless, in its time it had 
been a colourful and influential body. The rewards offered in 1714 stimulated 
many advances during the next 114 years over a very wide field, just as Parliament 
hoped would happen. Progress in astronomy worldwide, as well as in navigation 
and horology, was greatly furthered by the Board’s activities. The Board of 
Longitude was certainly one of the most important and interesting bodies in the 
development of science and technology of that period” (Johnson). 

Grolier/Horblit 42a. Baker, ‘Longitude Acts,’ Cambridge Digital Library (cudl.lib.
cam.ac.uk/view/ES-LON-00023). Johnson, ‘The Board of Longitude 1714-1828,’ 
Journal of the British Astronomical Association 99 (1989), pp. 63-69. 
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MEASURING THE MERIDIAN: 
AUTOGRAPH ACCOUNT

MÉCHAIN, Pierre François André. Autograph letter signed ‘Méchain’, to the 
brother of the French Ambassador to Genoa, Jean-Baptiste Dorothée Villars (b. 
1742), related to the on-going project to measure the length of the meridian arc 
between Dunkirk and Barcelona, and thereby establish the fundamental unit of 
length, the metre, the essential step in the establishment of the metric system. Ge-
noa: 27 October, 1794.

$2,500

Two pages in French (190 x 228 mm), usual folds, two-pin holes at top left hand 
corner where stapled, otherwise very good.

A fascinating glimpse into the details of the great expedition undertaken by 
Méchain and his collaborator Jean Baptiste Joseph Delambre to measure the 
length of the meridian, and thereby establish the length of the metre, the first 
step in the establishment of the metric system. Méchain writes to the brother of 
the French Ambassador to Genoa asking him to intervene with General Étienne-
Nicolas de Calon (1726-1807), head of the Department of Military Topography 
in Paris, who had requested Méchain’s return to Paris. Méchain had good reasons 
for not wishing to return – had he done so he could have become a victim of 
the Terror, as had several of his colleagues (his family had narrowly escaped it); 
and in Paris he would also have been forced to hand over his data, which would 
reveal a major error he had made which vitiated much of the work he had already 
carried out, and which he was hoping to keep secret. The letter sets out Méchain’s 
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plan to remain in Genoa by offering to carry out a pendulum experiment to 
measure the metre there instead of at Bordeaux, as had already been planned; he 
also points out that to return to Paris would be difficult and expensive, a wasteful 
exercise in view of the fact that he would have to return the following spring. “For 
many centuries there were no general standards for measurement: every trade 
and craft had its own peculiar units and they differed even in various regions of 
the same country. Since the development of international trade in the Middle 
Ages this chaotic situation had become more and more tiresome, but all efforts 
towards standardization were strongly resisted by vested interest … We owe the 
introduction of an international metric system to the French Revolution. In 1790 
the Académie des Sciences, at the request of Talleyrand, set up a commission to 
consider the question: among its members were J. C. Borda, Lagrange, Laplace, G. 
Monge and Condorcet. In 1791 they reported that the fundamental unit of length 
should be derived from a dimension of the earth: it should be the ten-millionth 
part of a quadrant of the earth’s meridian extending between Dunkirk and 
Barcelona … The astronomers Jean Baptiste Joseph Delambre and Pierre Francois 
André Méchain were charged with the task of measuring accurately the newly 
adopted length along the meridian arc between Dunkirk and Barcelona. Owing 
to the disturbances of the revolutionary period their work was much impeded, 
but in 1799 their measurement was completed” (PMM). The final results of 
the project were reported in Système Mètrique Décimal, ou Mesure de l’Arc du 
Méridien compris entre les Parallèles de Dunkerque et Barcelone, exécutée en 
1792 et Années suivantes, published at Paris in 1806-10, a famous work listed by 
PMM (260). No manuscripts by Méchain listed by ABPC/RBH.

À Genes le 27 Brumaire, l’an 3.e de la Rep.[ublique] francoise une et indivisible

Méchain astronome au Representant Villars Membre du Comité d’Instruction 
Publique

Citoyen

Quoique je n’aie pas l’avantage d’etre connu de vous, permettez que sous les auspices 
du Citoyen votre frere envoyé extraordinaire de la république, et qui me comble 
de ses bontés, je réclame vos bons offices auprès du representant Calon directeur 
du dépôt g[énéra]l de la guerre de terre et de mer, et même auprès du Comité de 
l’instruction publique dont vous etes l’un des plus dignes membres: voici l’objet de 
ma demande.

De retour ici d’Espagne où j’avois été envoyé pour y faire les opérations relatives à 
la mesure de l’axe du méridien, qui doit servir de base à l’établissement du systeme 
des poids et mesures, j’ai sollicité depuis plusieurs mois les ordres et autorisations 
nécessaires pour aller reprendre nos opérations dans les environs de Perpignan 
jusqu’où je les avois poussées du coté de la Catalogne, et les continuer en remontant 
vers Paris. Mais après avoir attendu longtemps, j’apprens enfin que la Commission des 
poids et mesures à laquelle j’étois attachée est supprimée ; et le representant Calon qui 
est chargé de faire continuer et terminer les opérations de la Méridienne, me mande 
de retourner à Paris pour concerter avec lui sur les moyens d’achever ces travaux 
avec succès. Mais comme il paroit assuré qu’on les reprendra le printemps prochain 
dans les environs de Perpignan, que le plan pour les continuer est tout tracé, puisque 
la méridienne a deja été mesurée par Cassini depuis Dunkerque jusqu’à Perpignan, 
qu’il ne s’agit que de repeter ces observations avec une plus grande exactitude qu’on 
n’a pu les faire il y a 50 ans ; le Citoyen Villars m’a engagé à representer au Citoyen 
Calon, que si le bien du service pour le dépôt de la Marine auquel je suis aussi 
attaché n’exigeait pas absolument ma présence à Paris pendant cet hyver il paraitroit 
plus à propos que mes coopérateurs et moi attendissions le retour de la belle saison 
pour nous rendre directement à Perpignan au lieu d’entreprendre un voyage long et 
difficile au milieu de l’hyver et très dispendieux, pour revenir à Perpignan presque 
aussitôt apres notre arrivée à Paris. Nous pourrons employer le tems à faire ici les 
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expériences de la longueur du pendule, qui entrent aussi dans le plan des opérations 
relatives aux poids et mesures ; il avoit été prescrit de les exécuter au bord de la mer 
sous le 45e parallele et au bord de la mer en conséquence on avoit designé Bordeaux; 
mais Genes est semblablement situé sur le globe, et en y remplissant actuellement 
cet objet on seroit dispensé d’elles exprès à Bordeaux. Cependant je suis tout près 
à retourner à Paris, si ce que je propose n’est pas le parti le plus avantageux; notre 
départ n’en sera retardé que de trois semaines ou un mois environ si l’on veut bien 
me faire passer la décision sur le champs.

Je vous aurois, Citoyen, la plus grande obligation, si vous voulez bien conférer sur 
cela avec le Citoyen Calon. Pardonnez à mon importunité; j’ai osé espérer, qu’aimant 
protégeant les sciences et les arts; consacré uniquement à tout ce qui peut contribuer 
à l’utilité à la gloire de la Nation, vous accueillerez ma demande surtout appuyée 
par votre cher frère.

Salut et fraternité

Méchain

Translation:

Méchain astronomer to Representative Villars of the Committee of Public Instruction

Although I do not have the advantage of being known to you, allow that under the 
auspices of the Citizen your brother, extraordinary envoy of the republic, and who fills 
me with his kindness, I ask your good offices with the representative Calon, director of the 
the deposit of war of land and sea, and even with the Committee of Public Instruction, 
of which you are one of the most worthy members; here is the object of my request. 
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Returning here from Spain where I had been sent to carry out operations relating 
to the measurement of the axis of the meridian, which must serve as a basis for 
the establishment of the system of weights and measures, for several months I have 
asked for the orders and authorizations necessary to resume our operations in the 
neighborhood of Perpignan, to where I had pushed them on the side of Catalonia, and 
to continue them towards Paris. But after having waited a long time, I finally learn 
that the Weights and Measures Commission to which I was attached is suppressed; 
and that representative Calon, who is in charge of continuing and terminating the 
operations of La Meridienne, asks me to return to Paris to consult with him on the 
means of completing this work successfully. But as it seems certain that they will 
be resumed next spring in the vicinity of Perpignan, that the plan for continuing 
them is mapped out, since the meridian has already been measured by Cassini from 
Dunkerque to Perpignan, that it is only a matter of repeating these observations with 
greater accuracy than was possible 50 years ago; Citizen Villars asked me to represent 
to Citizen Calon, that if the good of the service for the depot of the Navy to which I 
am also attached did not absolutely require my presence in Paris during this winter, 
it seems more appropriate than my co-workers and I wait for the return of the fine 
season to go directly to Perpignan instead of taking a very expensive, long and difficult 
journey in the middle of the winter to return to Perpignan almost immediately after 
our arrival in Paris. We may use the time here to make experiments on the length of 
the pendulum, which also enter into the plan of operations relating to weights and 
measures; it had been prescribed to execute them at the seashore under the 45th 
parallel, and at the seashore, as a result, Bordeaux had been designated; but Genoa 
is similarly situated on the globe, and by filling this object at present they would be 
dispensed from them expressly at Bordeaux. However, I am very near to return to 
Paris, if what I propose is not the most advantageous solution; our departure will be 
delayed by only three weeks or a month if we want to make the decision in the field. 
 
I would have you, Citizen, the greatest obligation, if you will confer on it with Citizen 

Calon. Forgive my importunity; I dared to hope, that a loving protecting the sciences 
and the arts; devoted solely to all that can contribute to the utility to the glory of the 
Nation, you will receive my request, especially supported by your dear brother

“Measures in the eighteenth century not only differed from nation to nation, but 
within nations as well. This diversity obstructed communication and commerce, 
and hindered the rational administration of the state. It also made it difficult for the 
savants to compare their results with those of their colleagues. One Englishman, 
traveling through France on the eve of the Revolution, found the diversity there 
a torment. “[I]n France,” he complained, “the infinite perplexity of the measures 
exceeds all comprehension. They differ not only in every province, but in every 
district and almost every town....” Contemporaries estimated that under the 
cover of some eight hundred names, the Ancien Régime of France employed a 
staggering 250,000 different units of weights and measures.

“In place of this Babel of measurement, the savants imagined a universal language 
of measures that would bring order and reason to the exchange of both goods and 
information. It would be a rational and coherent system that would induce its users 
to think about the world in a rational and coherent way. But all the savants’ grand 
plans would have remained fantasy had not the French Revolution -- history’s 
great utopian rupture -- provided them with an unexpected chance to throw 
off the shackles of custom and build a new world upon principled foundations. 
Just as the French Revolution had proclaimed universal rights for all people, the 
savants argued, so too should it proclaim universal measures” (Alder, pp. 2-3). 

“In 1790 the National Assembly approved an Academy proposal to establish a 
decimal system of measures, and Méchain and Delambre were designated to 
carry out the fundamental geodetic measurements for a new unit of length. This 
unit, the meter, was intended to be one ten-millionth part of the distance from the 
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terrestrial pole to the equator, and it was to be based on an extended survey from 
Dunkerque to Barcelona, Méchain was assigned the shorter but more difficult 
southern zone, the previously unsurveyed region across the Pyrenees.

“The new repeating transit became the fundamental instrument of the survey, 
but not until June 1792 was the new equipment, including parabolic mirrors for 
reflecting signals, ready. By this time the Revolution was engulfing France and 
the monarchy was tottering; Méchain with his suspicious array of instruments 
was arrested at Essonnes just south of Paris as a potential counterrevolutionary. 
Only with much difficulty was he located and released two months later, so that 
he could continue his journey to Spain. In September and October he swiftly 
carried out the triangulation between Perpignan and Barcelona … His plans were 
abruptly interrupted at the beginning of spring in 1793 when, invited by a friend 
to inspect a new hydraulic pump in the outskirts of Barcelona, he was involved in 
an accident. While trying to start the machine, the friend and an assistant were 
caught in the mechanism. Méchain, rushing to aid them, was struck by a lever 
that knocked him violently against the wall, breaking some ribs and a collarbone 
… During Méchain’s convalescence, open war had broken out between Spain and 
France, and he was denied a passport to return home. Profiting from his captivity, 
he determined the latitude of Montjouy, just south of Barcelona, and surveyed the 
triangle connecting these points. He then noticed a 3” discrepancy in the latitude 
previously obtained for Barcelona. Anguished by his failure to find the cause, 
and blaming himself for the error, he kept the discrepancy a carefully guarded 
secret … Eventually Méchain obtained a passport for Italy, and he managed to 
reach Genoa in September 1794. Saddened by the guillotining of several of his 
colleagues and in poor health, he delayed his return to France, not embarking for 
Marseilles until the following year” (DSB, under Méchain).

“Méchain’s spirits were not improved by the greeting sent by his colleagues on 

the Commission of Weights and Measures. At the end of August they finally 
sent him a copy of the law of 1 August 1793, which had established the metric 
system … Moreover, they informed him that Delambre had been purged from 
the Commission, with no one assigned to take his place. Méchain drew his 
own conclusion: the meridian expedition, he decided, had been ‘definitively 
abandoned’ Then, the very next week, came the good news … His supposition 
had been premature: the meridian project was being revived … General Calon 
had been had been placed at the head of the department of military topography, 
with Méchain appointed chief of naval cartography … Official news of this 
appointment arrived from Calon himself two weeks later, with this request: that 
Méchain return immediately to Paris so that they might discuss the future of the 
meridian project together …

“Calon was ordering him to return to Paris, where he would surely have to turn 
over his data … Worse, the revival of the meridian project meant that his mistake 
mattered again, that the discrepancy in the Mount-Jouy data was once more an 
affront to the accuracy of the metre, ‘the most important mission with which man 
has ever been charged’ … Most unsettling of all was the news that accompanied 
the announcement of the meridian project’s revival. Lalande confirmed that 
Lavoisier, Condorcet and several other colleagues had been guillotined. Worse, 
Lalande informed him that the Terror had struck even closer to home – in the 
grounds of the Observatory, where his family still lived … Had Méchain been 
living in Paris at the time, the consequences would have been too awful to 
contemplate … Yet even after telling him Méchain all this, Lalande still expected 
him to return to France that month.

“In early October the French ambassador to Genoa was recalled to Paris to 
account for his Jacobin sympathies, and his replacement, Ambassador Villars, 
arrived with funds and passports to speed the team’s return … Calon still insisted 
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that he report to Paris. ‘For you are not destined to return to Italy, but to extend 
the measure of the meridian in concert with Delambre.’

“So Méchain concocted another plan to justify his sojourn in Genoa … As Méchain 
pointed out, Genoa was near the 45th parallel, halfway between the equator and 
the pole. Bordeaux was not the only site suitable for a pendulum experiment to 
determine the length of the metre. If Calon would just send him the Observatory’s 
platinum-bob pendulum, Méchain would save the Commission the trouble of 
transporting a scientific team to Bordeaux. Or, alternatively, he might conduct 
observations at Genoa to supply new refraction corrections (and secretly resolve 
the discrepancies in his own Barcelona data)” (Alder, pp. 177-182). 

It was this plan that Méchain put forward in the offered letter. 

“In the end, the new French Ambassador rescued Méchain by taking matters out 
of his hands … He advised Méchain to request further instructions from Paris – 
no one could ever fault a public servant for seeking to clarify his orders – and in the 
interim he would refuse to issue Méchain a passport, thereby taking responsibility 
for the delay upon his own head. All Méchain had to do was to write the request. 
On Monday morning, Villars told him he expected the official request by two that 
afternoon, before the mail-boat set out. When Méchain arrived at the post office 
at half-past three … the outgoing mail was already in the satchel and Villars and 
the carrier were waiting impatiently. Villars snatched the letter out of Méchain’s 
hand, and stuffed it in the satchel …

“Villars’ manoeuvre worked … Méchain spent the rest of the winter on the Italian 
Riviera” (Alder, pp. 182-183). 

After returning to France, Méchain travelled to Perpignan and resumed his work. 
This continued through 1796 and 1797, and in the spring of 1798 he reluctantly 
returned to Paris. There he was made director of the observatory, but he yearned to 
return to Spain, “and eventually the Bureau of Longitudes approved the extension 
of the meridian to the Balearic Islands, a project that would render his imperfect 
latitude of Barcelona unnecessary … The expedition left Paris on 26 April 1803, 
but encountered unexpected delays in Spain. When the ship at last departed for 
the islands, an epidemic of yellow fever broke out on board. Méchain eventually 
reached Ibiza, but he discovered that his mainland station at Montsia could not 
be sighted from the island. Thus he was obliged to change the pattern of triangles 
and survey a greater distance southward in the mountains along the Spanish 
coast. Exhausted by the work and further weakened by fever and a poor diet, he 
collapsed and died on 20 September 1804. Several years later the extension of the 
meridian was completed by Biot and Arago” (DSB).

Alder, The Measure of All Things, 2002. See PMM 260.
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THE MÖBIUS BAND

MÖBIUS, August Ferdinand. ‘Ueber die Bestimmung des Inhaltes eines Polyëders’, 
pp. 31-68 in Berichte der Königlichen Sächsischen Gesellschaft der Wissenschaften 
zu Leipzig. Mathematisch-Physisiche Classe 17 (1865). [With:] ‘Theorie der elemen-
taren Verwandtschaft’, pp. 18-57 in ibid. 15 (1863). Leipzig: S. Hirzel, 1866[-1864].

$3,200

Two complete journal issues, 8vo (226 x 140 mm). [1865:] pp. [iv], xii, 116, with one 
folding plate (coloured); [1863:] pp. 81. Original printed wrappers, unopened (front 
wrapper of 1865 issue slightly soiled, very minor wear to ends of spine). Fine copies.

First edition, journal issues in the original printed wrappers, of two of the most 
important papers in the early history of topology, including the introduction 
(and illustration) in the 1865 paper of the famous ‘Möbius band’ (or ‘Möbius 
strip’). “August Möbius was one of the nineteenth century’s most influential 
mathematicians and astronomers” (Fauvel et al.). “Möbius first described the 
‘Möbius band’ in a paper presented to the Paris Academy in 1861 as an entry to a 
competition on the theme “Improve in some important point the geometric theory 
of polyhedra.” Möbius’ paper, written in bad French and containing many new 
ideas, was not understood by the jury, and like the other papers submitted to the 
competition, was not awarded the prize. The contents of the paper were published 
by Möbius in his articles ‘Theorie der elementaren Verwandtschaft’ (1863) and 
‘Ueber die Bestimmung des Inhaltes eines Polyëders’ (1865)” (Kolmogorov & 
Yushkevich, p. 101). From an examination of Möbius’s notebooks it is known that 
he discovered the Möbius strip in 1858; it was discovered independently in the 
same year by Johann Listing (who had coined the term ‘topology’ in 1847). On his 
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discovery of a one-sided surface, Ian Stewart writes (Fauvel et al, p. 159): “It was 
typical that Möbius should notice a simple fact that anyone could have seen in the 
previous two thousand years – and typical that nobody did”. Norman Biggs (ibid., 
p. 112) speculates that both Listing and Möbius may have been influenced in 
their discovery by the great Carl Friedrich Gauss (1777-1855). Gauss, Listing and 
Möbius all worked for many years at Göttingen; Möbius studied under Gauss and 
Listing freely acknowledges that he was trying to develop the topological ideas of 
Gauss, who himself never published anything on the subject.

The Möbius band is a surface obtained by taking a strip of paper, giving one of the 
two ends a half twist, and then gluing together the two ends. Unlike the cylinder, 
obtained by joining the ends of the strip without a twist, the Möbius band has 
only one side. This is sometimes illustrated by saying that an ant walking around 
a Möbius band will return to its starting position but will be on the opposite side. 
This is famously illustrated in M. C. Escher’s woodcut ‘Möbius Strip II (Red Ants).’ 
A further surprising property of the Möbius band is that, whereas a cylinder has 
two boundary curves, the Möbius band has only one: if you start at any point on 
the boundary and move along you will pass through every point on the boundary 
before returning back to your starting place. The 1865 paper contains the first 
published illustration of a Möbius band.

In his 1865 paper, “Möbius pointed out that ‘having only one side,’ while intuitively 
clear, is difficult to make precise, and proposed a related property that could be 
defined in complete rigour. This property was ‘orientability’. A surface is ‘orientable’ 
if you can cover it with a network of triangles, with arrows circulating round each 
triangle, so that whenever two triangles have a common edge the arrows point in 
opposite directions. If you draw a network on a plane, for example, this is what 
happens. On a Möbius band, no such network exists” (Stewart). By gluing the 
circular edge of a disc to the single edge of his band, Möbius constructed the first 

example of a non-orientable ‘closed’ surface (i.e., one without boundary curves); 
this is now called a ‘projective plane’ and is the simplest of an infinite number 
of such surfaces. Möbius also showed that there is no well-defined concept of 
volume (‘Inhalt’) for a non-orientable closed surface.

Möbius’s 1863 paper gave a classification of closed orientable surfaces. Such surfaces 
had been studied by Bernhard Riemann as part of his theory of complex functions 
(they are now called ‘Riemann surfaces’ in that context), and he had grasped 
intuitively that they are classified by the number of ‘holes’ (zero for a sphere, one 
for the surface of a doughnut, etc.), a concept that had been introduced by Simon 
L’Huilier in 1813, building on work of Leonhard Euler in 1752. Möbius gave the 
first rigorous proof of this important result. For this it was first necessary to agree 
when two such surfaces are to be considered ‘equivalent’. Möbius introduced the 
idea of elementaren Verwandtschaften (‘elementary relationships’) between two 
surfaces, in which ‘each point of one corresponds to a point of the other, in such 
a way that two infinitely neighbouring points always correspond to two infinitely 
neighbouring points’ (such transformations are now called ‘homeomorphisms’). 
Möbius showed that if two closed orientable surfaces have the same number of 
holes, there is an ‘elementary relationship’ from one to the other (i.e., they are 
‘equivalent’). His proof was remarkably modern. “He classified singular points 
of a ‘height’ function into ‘elliptic’ and ‘hyperbolic’ points and developed what 
from a 20th century point of view reads as a geometric presentation of the Morse 
theory of differentiable closed orientable surfaces” (James, p. 37). In his 1865 
paper, Möbius showed that the classification theorem no longer holds for closed 
surfaces that are not necessarily orientable.

August Ferdinand Möbius (November 17, 1790 – September 26, 1868) was born 
in Schulpforta, Saxony-Inhalt, and was descended on his mother’s side from 
religious reformer Martin Luther. He studied mathematics under Carl Friedrich 
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Gauss and Johann Pfaff. His early work was devoted to astronomy, culminating 
in his Die Elemente der Mechanik des Himmels (1843), which gives a through 
treatment of celestial mechanics without the use of higher mathematics. His best-
known book, Der barycentrysche Calcul (1827) is celebrated for the introduction 
of homogeneous coordinates into projective geometry. Many mathematical 
concepts are named after him, including the Möbius transformations, important 
in projective geometry, and the Möbius function and the Möbius inversion 
formula in number theory.

“August Möbius influenced mathematics on many levels. Specific ideas – his 
famous one-sided surface, his inversion formula, his number-theoretic function, 
his transformations of the complex plane, his geometrical nets – bear his name. 
But, in addition, and perhaps more importantly, Möbius was aware of the big ideas, 
the general principles, the major areas of research … What is Möbius’s modern 
legacy? It is a large part of today’s mathematical mainstream. The concepts that 
attracted his attention, and the methods that he helped to develop, play a central 
role in modern mathematics” (Ian Stewart in Fauvel et al, p. 120).

Biggs, ‘The development of topology,’ pp. 106-119 in J. Fauvel, R. Flood & R. 
Wilson (eds.), Möbius and his band (1993); I. M. James (ed.), History of Topology 
(1999); A. N. Kolmogorov & A. A. Yushkevich, Mathematics in the 19th Century, 
Vol. II (1996); I. Stewart, Visions of Infinity: The Great Mathematical Problems 
(2011), Chapter 10.
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DU CHÂTELET’S FRENCH 
TRANSLATION OF THE ‘PRINCIPIA’

[NEWTON, Sir Isaac] DU CHÂTELET, Gabrielle-Émilie le Tonnelier de 
Breteuil, Marquise. Principes Mathématiques de la Philosophie Naturelle, par feue 
Madame la Marquise du Chastellet. Paris: Desaint & Saillant, 1759.

$5,500

Two vols., 4to (251 x 188 mm), Volume I: pp. [iv], xxxix, [1, errata], [4] (Voltaire’s 
poem), 243, [1, blank] (Book I), [1], 246-437, [1] (Book II), with 9 folding engraved 
plates; Volume II: pp. [iv], 180 (Book III), 297, [2, Privilege] (Du Châtelet’s com-
mentary), with 5 folding engraved plates. Bound in uniform contemporary calf, red 
title lables with gilt lettering, some wear to capitals, hinges starting.

First edition in French of Newton’s Principia, “the greatest work in the history 
of science” (PMM), translated by Voltaire’s mistress, Madame du Châtelet, 
with the assistance of Alexis-Claude Clairaut. Begun in 1745 but published 
posthumously, this is her most important work. It was the first translation into a 
language other than English and is “still the only French translation ever made … 
The first volume contains, in addition to Books I and II [of Principia], a ‘preface 
historique’ and a poem by Voltaire. The second volume contains Book III and, 
separately paginated, ‘Exposition abrégée du système du monde, et explication 
des principaux phénomenes astronomiques tirée des Principes de M. Newton’ 
(pp. 1-116). This was supplied by Clairaut. There was also ‘Solution analytique 
des principaux problèmes qui concernent le système du monde’ (pp. 117-286)” 
(Gjertsen, Newton Handbook, p. 480). Voltaire’s ‘preface historique’ is partly an 
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extravagant Éloge of his late mistress but also a survey of Newton’s philosophical 
position and the problems of translation. “Known throughout intellectual Europe 
as Émilie, the name popularized by Voltaire, Mme. du Châtelet—beyond the 
influence that she had for some fifteen years on the orientation of Voltaire’s 
work and on his public activity—contributed to the vitality of French scientific 
life and to the parallel diffusion of Newtonianism and Leibnizian epistemology. 
Her affairs entertained the fashionable world of her period, yet her last moments 
revealed the sincerity of her scientific vocation. Although she limited her efforts 
to commentary and synthesis, her work contributed to the great progress made 
by Newtonian science in the middle of the eighteenth century” (DSB). “For a long 
time, Emilie du Châtelet’s French translation and her commentary on Newton’s 
Philosophiae naturalis principia mathematica provided the only access to Newton’s 
principles of natural philosophy in French and, together with her commentary 
on Leibniz’s philosophy in the Institutions de physique, it thus greatly influenced 
scientific discourse in the eighteenth century and can be said to have furthered 
both transnational and European scientific collaboration” (Winter, p. 174). A 
few copies of this work were issued with a date of 1756. “Although the first issue 
does have the date 1756 on its title page, it is very rare and may well have been, 
according to Cohen, ‘a preliminary edition, not made available for general sale to 
the public.’ He managed to trace only twelve” (Gjertsen). This copy is complete 
with Cotes’s preface, which is sometimes lacking.

The Principia, first published in 1687, elucidated the universal physical laws of 
gravitation and motion which lie behind phenomena described by Newton’s 
great predecessors Copernicus, Galileo and Kepler. Newton established the 
mathematical basis for the motion of bodies in unresisting media (the law of 
inertia); the motion of fluids and the effect of friction on bodies moving through 
fluids; and, most importantly, set forth the law of universal gravitation and its 
unifying role in the cosmos. “For the first time a single mathematical law could 

explain the motion of objects on earth as well as the phenomena of the heavens … 
It was this grand conception that produced a general revolution in human thought, 
equalled perhaps only by that following Darwin’s Origin of Species” (PMM). In 
1713 a second edition was published, edited by Roger Cotes. Numerous changes 
were made to the text, and Cotes also provided an important preface in which 
he undertook to explain and defend Newton’s account of gravity. The definitive 
third edition, the last to be corrected by Newton himself, was edited by Henry 
Pemberton and was published in 1726. A few changes were made but, compared 
to 1713, there were, in Cohen’s phrase, no ‘bold and exciting innovations.’ An 
English translation, by Andrew Motte, was published in 1729, and the so-called 
‘Jesuits’ edition, edited by F. Jacquier and T. Le Seur, appeared in three volumes (in 
Latin) in 1739-1742. No further editions were published until Mme. du Châtelet’s 
French translation.

On 22 June 1725 Gabrielle-Émilie married Florent-Claude, marquis du Châtelet 
and count of Lomont, who, after spending several years with her when he was 
governor of the city of Semur-en-Auxois, pursued a military career and visited 
her only briefly. After returning to Paris in 1730, Émilie du Châtelet led a 
glittering existence and had several affairs before becoming intimate, in 1733, 
with Voltaire, who had just completed his Lettres philosophiques. Several of these 
lettres dealt with Newton’s philosophy and were given for review to Pierre-Louis 
Maupertuis, the author of the first French work devoted to the Newtonian world 
system, the Discours sur la figure des astres (1732). Mme. du Châtelet in her turn 
developed a very cordial friendship with Maupertuis and with another ardent 
Newtonian, Alexis-Claude Clairaut. The mathematics lessons that she received 
from Maupertuis at the beginning of 1734 awakened her scientific inclinations.

In June 1734 Voltaire, threatened with arrest, withdrew to one of Mme. du 
Châtelet’s properties, the chäteau at Cirey in Champagne, the restoration of which 
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he undertook. The marquise spent a few months there at the end of 1734 and 
then made several prolonged stays. Devoting their time variously to their literary 
endeavors, metaphysical, philosophical, and scientific discussions, and a very 
refined worldly existence, she and Voltaire made the château at Cirey one of the 
most brilliant centres of French literary and philosophical life.

The stay at Cirey, at the end of 1735, of Francesco Algarotti, who was preparing a 
popularization of Newtonian optics, II newtonianismo per le dame, which appeared 
in 1737, incited Voltaire and Mme. du Châtelet to undertake a work propagandizing 
Newtonian science, and she began a systematic study of Newton’s work, writing 
an Essai sur l’optique, of which a fragment is preserved, and participating in the 
elaboration of the Éléments de la philosophie de Newton, published by Voltaire in 
1738. It is to this book that she devoted her “Lettre sur les élémens de la philosophie 
de Newton”, published in the Journal des sçavants in 1738, a report on and defense 
of that part of the work which discusses Newtonian attraction. Over the next 
several years, however, she took up Leibnizian epistemology, under the influence 
of Johann I Bernoulli and Maupertuis, and it was not until 1745 that she returned 
to Newtonianism, deciding to dedicate all of her scientific activity to perfecting a 
French translation of Newton’s Principia. It was to be enriched by a commentary 
on the work inspired by the one accompanying the Latin edition of T. Le Sueur 
and F. Jacquier and by theoretical supplements drawn essentially from the most 
recent works of Clairaut. As early as 1746 she obtained Clairaut’s collaboration 
as adviser, as reviser of her translation and her commentaries, and as author of 
theoretical supplements to her work. In the spring of 1747 the definitive plan 
was settled upon, the translation completed, and the printing begun. But Clairaut 
then found himself involved in a major discussion on the modifications to the 
law of universal gravitation which were apparently needed in order to explain an 
anomaly observed in the movement of the moon’s apogee, and it was not until 
February 1749 that she came to Paris to finish her book in collaboration with 
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Clairaut. The revelation of an unexpected and late pregnancy increased her desire 
to complete the project before the confinement that she dreaded. At the end of 
June, fleeing indiscreet stares, she left for Lunéville, where she died of childbed 
fever. Before her death she entrusted the manuscript of her annotated translation 
of the Principia to the librarian of the Bibliothèque du Roi in Paris.

The work consists of two parts. The first is a translation of the text of the Principia 
in the 1726 edition. Mme. du Châtelet added clarifications and amplifications 
where she thought it necessary. The second part is a commentary on Newton’s 
system of the world. This is in turn divided into two parts. The first of these 
begins with Du Système du Monde, which sets out the basic physical principles, 
followed by an Exposition abregée duSystème du Monde, which aims to give an 
account of the principal astronomical phenomena, on Newtonian principles, 
in as straightforward and non-technical manner as possible. The second, more 
technical part, Solution analytique des principaux Problèmes qui concernent le 
Système du Monde, analyses some of the most important problems relating to 
the system of the world: the nature of the orbits of the planets under various 
hypotheses about the nature of the force of attraction; the attraction of bodies of 
various shapes; the theory of the shape of the earth and the tides; and an account 
of the refraction of light based on the principles of attraction. Much of this is 
drawn from the works of Clairaut, and from Daniel Bernoulli’s prize essay on 
the tides (‘Traité sur le flux et reflux de la mer,’ Piéces qui ont remporté les prix 
de l’Académie royale des sciences (Paris), 1740). There was no discussion of fluid 
mechanics.

“In her commentary on the Principia, Du Châtelet shifts her focus from Newton’s 
theories of natural philosophy to his astronomical theories. Du Châtelet in 
fact excludes Newton’s natural philosophy in favour of an in-depth discussion 
of his astronomy. In her ‘Exposition abrégéé du Système du monde’, Newton’s 

theories on absolute time and space, his notion of God and God’s influence on 
cosmic structure and his concept of the ‘causae finales’ are neither mentioned nor 
explicitly commented on. Newton’s concepts of mass and inertia, which form the 
foundation of all of his definitions of matter, are also only mentioned briefly … 
Du Châtelet’s commentary on the Principia surprisingly only deals with Newton’s 
physical laws and their respective mathematical calculations, to which she now 
adds a number of her own calculations. This shift in focus is aptly supported by her 
subtitle ‘Explication des principaux phénomènes astronomiques. Tirée des principes 
de m. Newton’, which shifts the emphasis from Newton’s extensive paradigm of 
nature to descriptions and calculations of physical laws. What this shows is that 
Du Châtelet understands her commentary on Newton to be a discourse in its 
own right; her work seeks to uphold an objective view of Newton’s work, while 
at the same time introducing her own definitions and terms. Consequently, 
Du Châtelet also dedicates the beginning of her work to her own definition of 
gravitation: ‘Au reste, je déclare ici, comme M. Newton a fait lui-mème, qu’en me 
servant du mot d’attraction, je n’entend que la force qui fait tendre les corps vers 
un centre, sans prétendre assigner la cause de cette tendance’ … On her account, 
Newton’s theories are limited to the physical and astronomical world and are not 
understood as definite findings, as the cosmic law per se, as was the case with some 
of the English commentators. In presenting Newton’s ideas that way, Du Châtelet 
understands his theories as a considerable step towards scientific progress while 
at the same time reminding her readers to keep an open mind regarding their 
subsequent modifications and corrections” (Winter, pp. 181-184).

The genesis of Mme. du Châtelet’s translation and commentary has still not been 
fully elucidated. From her correspondence, we know that the first version of the 
translation was completed on 21 March 1746. On 15 February 1749 she wrote 
to Jacquier, “I hope everything will be finished by May.” The manuscript of the 
translation, together with a fragment of the second part of the commentary, 
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was given to the librarian of the Bibliothèque du Roi the day before she died 
on 10 September 1749. A preliminary edition was published in 1756, possibly 
designed for presentation only, with the regular edition appearing three years 
later. Two outstanding questions remain: (i) why was there a delay of more than 
a decade from the completion of the translation, apparently in late 1745, to the 
first publication in 1756; (ii) why was there a further delay of three years until the 
publication of the regular edition of 1759. We do not today have the manuscript 
from which the translation was printed (this is not the manuscript deposited 
in the Bibliothèque du Roi), nor do we have any complete manuscript of the 
commentary (a partial manuscript, containing only the Exposition abregée, was 
offered by Christie’s Paris, 29 October 2012, lot 16, but this seems not to have 
been subjected to scholarly study).

“The textual differences between the printed work and Mme. du Chastellet’s 
manuscript are both stylistic and technical, and they show how much revision 
was needed in order to ready her translation for publication. We do not know 
how much of this revision was done by Mme. du Chastellet herself, and how much 
was done by Clairaut; nor are we able to say whether the bulk of Clairaut’s work 
on this text may have been done before the death of the Marquise. Possibly the 
delay in publication may have been caused by the slowness with which that final 
revision was completed. That the translation was revised by Clairaut is put out of 
any doubt by a declaration of the publisher in the ‘Avertissement de l’éditeur’: ‘A 
l’égard de la confiance que le Public doit avoir dans cette traduction, il suffit de 
dire qu’elle a été faite par feue Madame la Marquise du Chastellet, & qu’elle a été 
révue par M. Clairaut’. In the Preface Historique at the beginning of vol. I of the 
translation, written by Voltaire, nothing is said of any revision of the translation. 
With respect to the commentary however, Voltaire did state definitely that the 
great mathematician Clairaut had taken a hand. Voltaire admitted that many of 
the ideas in the commentary were Clairaut’s, that – although Mme. Du Chastellet 
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had made the calculations by herself – Clairaut went over each chapter as she 
finished it and corrected it: ‘M. Clairaut faisoit encoire revoir par un tiers les 
calculs.’ Finally, according to Voltaire, at the time of the death of the Marquise, ‘Elle 
n’avoit pas encore … termine le Commentaire.’ Possibly the delay in publication 
was due to the need of time for Clairaut to complete the commentary and ready it 
for publication, rather than to work on the translation” (Cohen, pp. 264-6).

Bernard Cohen, ‘The French Translation of Isaac Newton’s Philosophiae Naturalis 
Principia Mathematica (1756, 1759, 1966),’ Archives internationales d’Histoire 
des Sciences, Vol. 21 (1968), pp. 262-290. M. Toulmond, “Le Commentaire des 
Principes de la Philosophie naturelle’ in Émilie du Châtelet, éclairages & documents 
nouveaux, Publications du Centre international d’étude du XVIIIe siècle 21, 2008. 
Winter, ‘From translation to philosophical discourse – Emilie du Châtelet’s 
commentaries on Newton and Leibniz,’ pp. 173-206 in Emilie du Châtelet between 
Leibniz and Newton (Hagengruber, ed.), 2012.
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THE MOST INFLUENTIAL WORK IN 
THE HISTORY OF CAPITALISM

PACIOLI, Luca [Lucas de Burgo S. Sepulchri]. Su[m]ma de arithmetica geome-
tria proportioni et proportionalità. [Colophon:] Venice: Paganinus de Paganinis, 
10-20 November 1494.

$1,350,000

Two vols. in one, folio (319 x 217 mm), ff. [8], 224; 76, with large white-on-black 
woodcut initials (including a repeated depiction of Pacioli with a pair of dividers 
and a copy of the Summa before him), full-page woodcut ‘tree of proportion’ printed 
in red and black, full-page woodcut showing finger symbolism for numbering, nu-
merous woodcut mathematical and geometrical diagrams, and illustrations show-
ing instruments and methods of measuring, in margins; a few minute wormholes in 
a few gatherings, not affecting text, a fine, large copy, with numerous deckle edges, 
in its original Italian [Venetian?] binding of quarter leather with blind-ruled panels 
on sides, over bevelled wooden boards, with four embossed brass catchplates and 
remains of clasps.

First edition, first issue (see below), very rare, this is a remarkable copy in entirely 
original condition and with a distinguished provenance, having been in the 
famous Giustiniani family from publication to the present day. The Summa is 
a work of enormous importance on several levels. It is the first mathematical 
encyclopaedia of the Renaissance, ‘the first great general work on mathematics 
printed’ (Smith, Rara arithmetica, p. 56), and the first printing of any of the works 
of the great thirteenth-century mathematician Leonardo of Pisa, called Fibonacci 
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(c. 1175-c. 1250), and of Pacioli’s friend, the brilliant mathematician and artist 
Piero della Francesca (1416-92). The first part of the Summa is the first printed 
comprehensive treatment of algebra and arithmetic, based largely on Fibonacci’s 
1202 Liber Abaci which famously introduced Arabic numbers to the West, and 
which was itself in part a translation of the treatises on algebra and arithmetic of 
the Persian mathematician and astronomer Muhammad ibn Mūsā al-Khwārizmī 
(c. 780-c. 850) (the word algorithm derives from his name). The second part, on 
geometry, is based on Fibonacci’s Practica Geometriae, but includes at the end 
a section on stereometric geometry and regular solids taken from the Trattato 
d’abaco of Piero della Francesca. The first part of the Summa also contains sections 
illustrating the applications of arithmetic and algebra to problems in business, 
notably including Pacioli’s original treatise Particularis de Computis et Scripturis 
(‘Details of Accounting and Recording’) (ff. 197v-210v). This is the first printed 
text to set out the method of double-entry bookkeeping, the single most influential 
work in European accounting history, which earned Pacioli the title ‘Father 
of Accounting’; it has been called “the most influential work in the history of 
capitalism”. De Computis introduces the ‘rule of 72’ for predicting an investment’s 
future value, anticipating the development of the logarithm by more than a 
century. The business section of the Summa also contains the earliest discussion 
of mathematical probability in print (this was not in Liber abaci). “The oldest 
known printed source for the treatment of the problem of points is Luca Pacioli’s 
Summa” (Schneider, p. 230) – modern probability theory is generally regarded 
as having begun with the exchange of letters discussing the ‘problem of points’ 
between Fermat and Pascal in the mid-1650s. In its iconic full-page woodcut of 
finger counting (f. 36v), from which our modern ‘digital computing’ took its name, 
the Summa contains the earliest printed representation of computation. Sangster 
et al. argue that the Summa was, in fact, mainly intended as a reference text for 
merchants – it synthesised the three major mathematical traditions – medieval 
European, Arab and ancient Greek – but its use of the vernacular opened it up 

to businessmen, students, artists, technicians and scholars alike. The Summa is 
also a work central to the development of Leonardo da Vinci (1452-1519). Pacioli 
came to Milan where he held the chair of mathematics from 1496 to 1499, during 
which years he lodged with Leonardo, and taught him mathematics. Leonardo 
owned a copy of the Summa (he paid 119 soldi for it ca. 1494, as noted in the 
Codex Atlanticus f. 288 recto) and refers to it in his notebooks (see below for 
more on Leonardo and Pacioli). Only three other copies of the first edition of the 
Summa are recorded at auction in the last 50 years, of which only one was in its 
original binding, a copy of the second issue sold at Christie’s New York in 2019 
for $1,215,000.

Provenance: contemporary inscription on front free endpaper recto: ‘Di Giacomo 
Giust.[inia]no fu di m[esser] Lor.[enzo] Genovese e de soi amici’; Giacomo 
records the gifting of the book from his father Lorenzo Giustiniani, a member 
of the Genoan branch of the Giustiniani family; on verso: ‘sexqui altera sexqui 
tertia sexqui quinta // questo sexqui, via, fia in c.[arte] 27 // algebra, algebratica 
vuol dire speculativa’; i.e. referring to passages concerning the superparticular 
ratios sesquialtera (3:2), sesquitertia (4:3) and sesquiquinta (6:5). Coincidentally, 
the ancestor of Lorenzo, his namesake Saint Lorenzo Giustiniani (1381–1456), is 
depicted in a funerary statue in the St Pietro di Castello church in Venice, holding 
a book with a very similar binding (thanks to Nicholas Pickwoad for pointing 
this out).

The Summa, the writing of which had been completed by 1487, is divided into 
two volumes, the first dealing with arithmetic and algebra, the second with 
geometry. The first volume is divided into nine chapters (distinctiones): chapters 
1 to 7 on arithmetic (222 pages), chapter 8 on algebra (78 pages), and chapter 9 
on business (150 pages). The second volume comprises chapters 1-8 (151 pages), 
on geometry; it has separate signatures and foliation and a caption title. There is 
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a brief colophon at the end of part 1 referring to the full colophon at the end of 
part 2.

“In the dedication to duke Guidobaldo of Urbino [1472-1508], Pacioli gives a 
list of his sources. For the first part these include first and foremost Fibonacci’s 
Liber Abaci, followed by Jordanus [fl. 13th century], Blasius of Parma [1355-1416] 
and Prosdocimo de’ Beldomandi [1375-1428], among others …The geometrical 
part is taken from Fibonacci’s Practica geometriae and Archimedes … In making 
this vast compilation, Pacioli availed himself of many libraries including the 
ducal collection at Urbino. There he consulted al-Khwārizmī’s Algebra [which 
was translated into Italian at least by 1464, the date of a manuscript copy in the 
Plimpton Collection] …, as well as Piero della Francesca’s Libellus de Quinque 
Corporibus Regularibus. At the Venetian monastery of S. Antonio, he annotated 
a manuscript of Fibonacci’s Liber Abaci later seen by Cardano, and at Florence he 
used a text of Witelo’s Perspectiva [composed c. 1274]” (Rose, pp. 143-144). 

Pacioli particularly emphasizes his indebtedness to Fibonacci. Fibonacci was born 
around 1175, the son of a Pisan merchant, and in his early life travelled widely 
around Italy to Genoa and Venice, but also to Barbary, Egypt, Syria, Greece and 
France. On these trips he learned the Arabic ways of arithmetic and computation. 
From 1200 he settled back in Pisa and began his mathematical writings; the 
first and most important work was the Liber Abaci (The Book of Calculation) 
written in 1202. No copy of this first version has survived, but around 1228 a 
second version of the text was completed, with additional chapters. “Virtually all 
subsequent Renaissance algebraists cite Fibonacci and Pacioli in the same breath 
and indeed it was difficult to cite Fibonacci independently since his works were 
not published until the nineteenth century” (Rose, p. 145). The first volume of the 
Summa follows the Liber abaci closely.
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“Liber abaci is an encyclopedic work treating much of the known mathematics 
of the thirteenth century on arithmetic, algebra, and problem solving. It is, 
moreover, a theoretical as well as practical work; the methods employed in Liber 
abaci [Fibonacci] firmly establishes with Euclidean geometric proofs … General 
methods are established by using the geometric algebra found principally in Book 
II of the Elements. [Fibonacci] turns to Book X for a foundation of a theory of 
quadratic irrational numbers. Throughout Liber abaci proofs are given for old 
methods, methods acquired from the Arabic world, and for methods that are 
[Fibonacci’s] original contributions. Leonardo also includes those commonplace 
non-algebraic methods established in the mediaeval world for problem solving, 
at the same time giving them mathematical legitimacy with his proofs. Among 
others they include checking operations by casting out nines, various rules of 
proportion, and methods called single and double false position” (Sigler, pp. 4-5).

“It was [Fibonacci’s] purpose to replace Roman numerals with the Hindu numerals 
not only among scientists, but in commerce and among the common people” 
(ibid.). “When Fibonacci’s Liber abaci first appeared, Hindu-Arabic numerals 
were known to only a few European intellectuals through translations of the 
writings of the 9th-century Arab mathematician al-Khwārizmī. The first seven 
chapters dealt with the notation, explaining the principle of place value, by which 
the position of a figure determines whether it is a unit, 10, 100, and so forth, and 
demonstrating the use of the numerals in arithmetical operations” (Britannica). 

In this part Pacioli gives the first printed example of a set of plus and minus signs 
that were to become standard in Italian Renaissance mathematics: ‘p’ with a tilde 
above for ‘plus’ and ‘m’ with a tilde for ‘minus’.

“In addition to teaching all of the necessary methods of arithmetic and algebra, 
Leonardo includes in Liber abaci a wealth of applications of mathematics to all 

kinds of situations in business and trade, conversion of units of money, weight, 
and content, methods of barter, business partnerships and allocation of profit, 
alloying of money, investment of money, simple and compound interest” (Sigler, 
p. 5). This material comprises chapter 9 of the Summa, which is divided into 12 
sections (Tractati), the first ten on various items relevant to business (including 
barter and bills of exchange), the eleventh on bookkeeping (27 pages), and 
the twelfth on weights and measures and exchange rates. Pacioli interestingly 
observes that the term for the modern mathematics of merchants, ‘abbaco’, was 
likely derived from the phrase ‘in modo Arabico’ (‘In the Arab manner’) (see f. 
19r), not from the abacus counting device (see Sangster et al., p. 116).

Within these chapters on business, the eleventh section entitled Particularis 
de computis et scripturis describes the accounting methods then in use among 
northern-Italian merchants, including double-entry bookkeeping, trial balances, 
balance sheets and various other tools still employed by professional accountants. 
“Five hundred years ago, in November 1494, one of the world’s earliest printed 
texts included a section on accounting … Five hundred years later, the ideas 
printed in that accounting manual continue to provide the guidelines for recording 
economic activity in all the world’s great financial centers. The author of that 
first accounting manual is Luca Pacioli. The Summa de Arithmetica, Geometria, 
Proportioni at Proportionalita – which includes this first published discourse on 
accounting – is a work of genius” (Cripps, p. ix). Richard Brown has said [in 
his History of Accounting and Accountants (1905), p. 119] that “The history of 
bookkeeping during the next century consists of little else than registering the 
progress of the De computis through the various countries of Europe.”

“Pacioli defines double-entry bookkeeping broadly, as ‘nothing else than the 
expression in writing of the arrangement of [a merchant’s] affairs.’ If a merchant 
follows the system Pacioli sets out, then he will always know ‘all about his 
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business and will know exactly whether his business goes well or not’ … Pacioli’s 
formulation of Venetian double-entry bookkeeping is one of the great advances 
in the history of business and commerce. He recommends this method, which 
had been practised in Venice for two hundred years, as the best … Rather than 
mingling debt and credit entries under each other down a single column or page 
– as did the Florentine merchants before they began keeping their books alla 
viniziana – Venetian ledgers separate debits and credits, dividing them into two 
columns, which is exactly how we organise our ledgers today …

“In Pacioli’s view, three things are needed by ‘anyone who wishes to carry on 
business carefully. The most important of these is cash or any equivalent’ … 
The second thing necessary in business ‘is to be a good bookkeeper and ready 
mathematician.’ The third ‘and last thing is to arrange all the transactions in such 
a systematic way that one may understand each one of them at a glance, i.e., by 
the debit and credit method.’ Not much has changed today … Pacioli does not go 
into detail, as he makes clear in his introduction: ‘Although one cannot write out 
every essential detail for all cases, nevertheless a careful mind will be able, from 
what is given, to make the application to any particular case.’ Nor does he give 
sample pages of worked examples, as writers on bookkeeping would begin to do 
in the next century. Instead, he assumes his readers are merchants and their sons, 
with some working knowledge of bookkeeping …

“The first thing a merchant must do, says Pacioli, is to make an inventory of 
everything he owns … Once the inventory is made, a merchant needs three 
books in which to record his business transactions. The first is the memoriale, 
or memorandum, which acted like a diary and was a temporary record of the 
merchant’s transactions … The second book required is the giornale, or journal. 
After entering his inventory into the journal, the merchant uses this book to write 
up in a neat and orderly fashion the details of each transaction that has been 

PACIOLI, Luca.



recorded in the memorandum. In Pacioli’s Venetian system, every item entered 
into the journal must be preceded by one of two key words: per (which means 
‘from’ and indicated that the ledger account must be debited) and a (which 
means ‘to’ and indicated that the ledger must be credited) … The third book is 
the quaderno, or ledger. The ledger is made up of pages ruled in two columns 
(the simplest form of which is now known as a T-column) and it records – twice 
– every journal entry. For every entry made in the journal there will be two in 
the ledger: one, a debit, entered on the left side of the T-column; and the other, a 
credit, on the right. The ledger with its two columns marked a great advance in 
account-keeping. By using this system the merchant could at any moment see at 
a glance the precise state of his assets and his debts. It also allowed him to find 
mistakes in his bookkeeping relatively easily, because if his books did not balance 
– his debits were not equal to his credits – he had made a mistake somewhere 
and would have to scrutinize his books to find it. The ledger with its ‘double-
entries’ was an innovation made by the merchants of Venice and is the reason 
that Venetian bookkeeping is now known as double entry” (Gleeson-White, pp. 
92-100).

The section of the Summa on business contains what is almost certainly the first 
example of a logarithm in print. On f. 181r, Pacioli claims that the number of 
years necessary to double a capital placed at compound interest, is the number 
resulting from the division of the fixed number 72 by the rate of interest as a 
percentage. This was the ‘rule of 72’, which succeeding mathematicians including 
Tartaglia failed to explain. In modern notation, we want the number n such that

(1 + r/100)n = 2,

where r is the rate of interest. Our solution is n = log 2/log(1 + r/100), which if r 
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is small is approximately (100 log 2)/r. Thus, Pacioli was giving the approximate 
value 0.72 of the natural logarithm of 2, more than a century before logarithms 
were invented, and with an error of less than 3%.

The Summa can claim to be the earliest printed book on probability, thanks to 
its discussion of the famous ‘problem of points’, or division of stakes. On ff. 197r 
and 198v, Pacioli states two problems. The first of these is as follows (the other is 
similar):

‘A company [two players] plays a ball game to 60 and each goal is 10. They stake 
10 ducats in all. It happens by certain incidents that they are not able to finish; 
and one party has 50 and the other 20. One asks what portion of the stake is due 
to each party.’

Pacioli gives three solutions, each of which amounts to dividing the stakes in 
proportion to the number of points already won. Schneider notes that although 
Pacioli’s solution is incorrect, he had contributed to the problem of points in two 
significant ways. First, by simply offering a solution, Pacioli had put forward a 
problem that would later be brought to Cardano’s attention. Secondly, Pacioli 
advocated the view that a definite and unique solution exists for the problem of 
points. In Cardano’s Practica arithmetice (1539), he questions Pacioli’s solution, 
noting that it does not take into account the number of games yet to be won by the 
players. In section 20, titled ‘Error di Fra Luca dal Borgo,’ of his General trattato 
di numeri (1556-60), Tartaglia notes that ‘His rule seems neither agreeable nor 
good, since, if one player has, by chance, ten points and the other no points, then 
following this rule, the player who has the ten points would take all the stakes 
which obviously does not make sense.’ These criticisms were well founded, and 
although Cardano and Tartaglia proposed their own solutions, it was Pascal and 
Fermat who, in their correspondence beginning in 1654, first correctly solved 



the problem of points, using a combinatorial technique that was not available to 
earlier authors. 

The problem of points is clearly related to the division of shares in a trading 
company, which perhaps explains why Pacioli included it in the Summa. “Games, 
and especially games of chance, became a favourite pastime of the sixteenth-
century merchant. Betting and economic enterprises became intertwined in a way 
that can explain why gaming was understood as a process which recapitulated 
the activities of merchant adventurers in a condensed time span. This very close 
connection between gaming and the economy in the sixteenth century explains 
very nicely why the economy was the source of inspiration for the solution of the 
problem of points” (Schneider, p. 220). Pacioli actually wrote a book devoted to 
games of chance, De ludis, but this has not survived.

The second volume of the Summa is largely, though not entirely, a version of 
Fibonacci’s Practica geometriae, composed in 1220 or 1221. ‘Practical Geometry’ 
is the name of the craft of medieval land-measurers, known as agrimensores 
in Roman times, and as surveyors in modern times. Fibonacci wrote Practica 
geometriae for these artisans, a fitting complement to Liber abaci. The first chapter 
of the second volume of the Summa contains a summary of the books of Euclid’s 
Elements on fundamental geometric constructions, calculations of areas, and 
similarity theory. The second is concerned with special lines in a triangle. The 
third treats right triangles and the associated solution of quadratic equations 
(theorem of Pythagoras). In contrast to the writings of al-Khwārizmī, here 
the solution of quadratic equations is presented theoretically, not by means of 
examples. In addition, Pacioli dealt with equations of the third and fourth degree, 
which he held to be as unsolvable (impossibile) as the quadrature of the circle, an 
assertion that not long afterwards was refuted by Scipione del Ferro (1515) (Rose 
points out that Pacioli may have stimulated Scipio’s discovery – he was one of 
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Pacioli’s colleagues when Pacioli was lecturing Bologna in 1501-1502). The fourth 
chapter concerns the theory of the circle. Tables of chords give information on the 
lengths of chords and their associated arcs. For π, Pacioli gives the approximation 
3 33/229. In the fifth chapter, the division of geometric figures is discussed (theory 
of ratios). The sixth chapter explains how to calculate the surface area and volume 
of geometric solids. The seventh chapter introduces apparatus and methods of 
measurement. The eighth chapter contains a number of applications of different 
types: calculation of the volume of a barrel (approximately described as two frusta 
of cones), calculations on regular solids, and the inscribing of several equal circles 
of maximal size in a triangle and in a circle. Finally, Pacioli provides an overview 
of the coinage and weights and measures of the various Italian city-states.

In both the algebraic and geometric volumes of the Summa, Pacioli includes 
material from the Trattato d’abaco of Piero della Francesca (which was not 
published until the 20th century). The Trattato, composed between 1460 and 
1470, building on the work of Fibonacci, “belongs to the so-called abacus books, 
which, despite their name, presented not the abacus but mathematics on an 
elementary level for future merchants, bank clerks, artisans, and artists. The books 
dealt primarily with arithmetic, but often included some algebra and practical 
geometry as well – which is also true of Piero’s Trattato. In addition, Piero treated 
some more advanced geometrical objects, such as the regular polyhedra. He 
returned to these solids in the last of his books Libellus de quinque corporibus 
regularibus, in which he also included five semi-regular, also called Archimedean, 
polyhedral [convex polyhedra that have regular polygons of more than one 
kind as faces] … In Trattato [Piero] described two of these, one – later called 
a cuboctahedron – having eight equilateral triangles and six squares as faces, 
obtained by cutting off the corners of a cube through the midpoints of the edges. 
The second was a truncated tetrahedron that Piero constructed by cutting off the 
vertices of a tetrahedron through points situated one third of the edge length 

from the corners. In Libellus he came back to the truncated tetrahedron and then 
added the truncated versions of the remaining four regular polyhedra. Pacioli 
later incorporated the Libellus into his Divina proportione (1509). As to the rest 
of the contents of Trattato and Libellus, Piero benefited a great deal from earlier 
treatises – the material for which mainly dates back to Euclid, al-Khwārizmī, and 
Leonardo da Pisa” (DSB, under Piero della Francesca). Pacioli included more 
than a hundred problems of algebra and arithmetic from the Trattato in the first 
volume of the Summa; much of the geometrical content of the Trattato appears 
at the end of the second volume, including new theorems of Euclidean geometry, 
stereometric problems (e.g., the formula for the volume of a tetrahedron in terms 
of the lengths of its sides), as well as the material on polyhedra.

“The Summa was widely circulated and studied by the mathematicians of the 
sixteenth century. Cardano, while devoting a chapter of his Practica arithmetice 
to correcting the errors in the Summa, acknowledged his debt to Pacioli. 
Tartaglia’s General trattato de’ numeri et misure was styled on Pacioli’s Summa. 
In the introduction to his Algebra [1570], Bombelli says that Pacioli was the first 
mathematician after Leonardo Fibonacci to have thrown light on the science of 
algebra” (DSB, under Pacioli).

Born 1446-1448 in Borgo Sansepolcro, Pacioli was first schooled in Venice in 
the abbaco system, an applied, commercial education focusing on mercantile 
mathematics. He later studied mathematics under the great Florentine polymath 
mathematician and architect Leon Battista Alberti. Pacioli became a Franciscan 
friar in the early 1470s and shortly thereafter was named Perugia’s first public 
lecturer in abbaco arithmetic. Pacioli soon rose to teach mathematics at the 
university level and so was highly unusual in mastering both practical and 
theoretical mathematics. Prior to its publication in 1494, Pacioli had been 
working on the Summa for a period of thirty years. Pacioli regretted the low 
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ebb to which teaching had fallen and he thought that the fault lay in the use of 
improper methods and in the scarcity of available subject matter. He sought to 
correct these faults in the Summa.

Pacioli, who had studied chiefly in Venice, published his Summa there in 1494, two 
years before his extensive travels as a teacher brought him to Milan, summoned by 
the Duke Lodovico Sforza. There he held the chair of mathematics from 1497–99. 
In Milan he met Leonardo da Vinci, also in the service of Duke Lodovico Sforza 
‘il Moro’. They became friends and immersed themselves in common intellectual 
pursuits: ‘the remarkable convergence of their thought after 1496 was such that 
many of Luca’s published opinions would sit easily in Leonardo’s notebooks’ (M. 
Kemp, Leonardo da Vinci: the marvellous works of nature and of man, p 148). 
A note in the Codex Atlanticus reads: “Learn the multiplication of roots from 
Maestro Luca” (f. 331r), and both the Madrid and Forster codices contain notes 
on the Somma – in particular, sections on proportions and proportionality, 
including a mirror-version of the arbor proportionis et proportionalitatis on f. 
82r of Pacioli’s work. Pacioli familiarized Leonardo with Euclidean mathematics 
and “Luca’s presence in Milan served to encourage Leonardo to pursue far more 
explicit and fundamental investigations into the mathematical order which had 
formed the implicit basis of much of his earlier art and science” (ibid). On the 8th 
of February 1498 Pacioli argued in a court disputation for the status of painting as 
a liberal art involving mathematical knowledge.

Unemployed as a result of the fall of the Sforza regime in 1499, Pacioli and 
Leonardo resumed their peripatetic careers, ending up together in Florence where 
they found protection under its republican ruler Piero Soderini. There Pacioli 
embarked upon compiling his De divina proportione, illustrated by Leonardo, 
and a work best understood as the product of their collaboration and intellectual 
friendship. Pacioli’s acknowledgement of Leonardo in the introduction is 
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fulsome, referring as he does to the supreme beauty of his ‘figures of the platonic 
and mathematical regular solids … made and formed by that ineffable left hand 
accommodated to all the disciplines’, comparing Leonardo to the greatest of the 
ancient artists, and lauding the happy time they spent together at the Sforza 
court in Milan. He also refers to Leonardo’s never-to-be-completed treatises on 
painting, on local motion, on weight and on percussion, and praises his recently 
painted Last Supper in the refectory of Sta. Maria delle Grazie in Milan and the 
colossal clay model of the unexecuted equestrian statue of Lodovico il Moro, the 
bronze for the casting of which was used by the Duke to make cannon in his last-
ditch (and unsuccessful) attempt to defend his city against the invading armies of 
Louis XII of France.

One large repeated initial depicts the author standing over an illustrated 
mathematical text, presumably the Summa, with a pair of dividers in his hand. 
In the portrait of Pacioli by Jacopo de’ Barbari (1495; also attributed to Jacometto 
Veneziano) in the Capodimonte, Naples, Pacioli has his left hand on an open 
copy of Euclid, as “he demonstrates the eighth proposition from book XIII of the 
Elements of Euclid to a disciple, dressed according to the aristocratic fashion of the 
time, and identified as the duke Guidubaldo da Montefeltro, who instead turned 
his eyes towards the viewer. The friar had dedicated to the young duke the Summa 
de Arithmetica, geometry, proportions and proportionality, printed in Venice 
in 1494 and depicted in the painting right in front of the gentleman, with the 
inscription Li[ber] R[egularum] Luc[ae] Bur[gensis]” (Il ritratto di Luca Pacioli, 
Capodimonte website). Placed on top of the Summa’s red leather binding is a 
pentagonal dodecahedron, while a large crystal rhombicuboctahedron, half filled 
with water, is suspended beside him; this polyhedron has been attributed to the 
hand of Leonardo by some scholars. Pacioli also appears in the Brera Madonna by 
Piero della Francesca, who has used his features in the depiction of Peter Martyr.

This copy is the first issue; for reasons still unexplained the work was reissued 
twice (the second reissue can be dated to 1507–1509); for example, the copy in the 
British Library has some leaves in Boncompagni’s setting B (IGI 7134). For details 
see Clarke p 91. Of the first issue, Volume 2 was completed on November 10, 
1494, and the introduction to Volume 1 was completed on November 20, 1494. 
Pacioli tells us that he was present during 1493 and 1494 to oversee the printing, 
but it is clear that this did not include proof-reading as there are numerous 
typographical errors. The Venice printer, Paganino de’ Paganini (c. 1450-1538), 
ran a fairly small print shop at the time the Summa was published, although his 
business grew in the early 16th century when he was joined by his son Alessandro. 
Paganini also published Pacioli’s Divina proportione and his Italian translation of 
Euclid’s Elements, both in 1509. 

The Summa was an extremely large book for the period, and sold for 119 soldi, 
about one week’s wages for a university teacher at the time. Sangster et al. estimate 
that between 1000 and 2000 copies of the Summa were printed, of which about 
160 have survived. Olschki (Geschichte der Neusprachlichen Wissenschaftlichen 
Literatur, 1918) wrote that, for fifty years after its publication, the Summa was the 
most widely read mathematics work in Italy, and Favier [Gold and Spices: The Rise 
of Commerce in the Middle Ages, 1998], then president of the French Bibliothèque 
Nationale and author of many books on the Middle Ages, averred that the Summa 
was “an instant success and [was] for many years used by the business world” and 
that “merchants from every country rushed to buy this guide to accountancy” 
(Sangster et al., p. 142). 

ISTC il00315000 (all three issues); IGI 7132; GM 18913; BMC V pp. 457–8; Essling 
779; Goff L315; Goldsmiths 5; HC 4105; ICA p. 1; Klebs 718.1; Riccardi ii, 226; 
Smith, RaraArithmetica p. 54; Essling 779; Mortimer, Italian 16th Century Books 
II 2358 (second issue); Sander 5367; Stillwell 203. Jeremy Cripps, Particularis de 
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Computis et Scripturis … A Contemporary Interpretation (Seattle: Pacioli Society, 
1994); Alan Sangster, et al., ‘The Market for Luca Pacioli’s Summa arithmetica’, 
Accounting Historians Journal, vol. 35, 2008, pp. 111–134; P. L. Rose, The Italian 
Renaissance of Mathematics (Geneva: Librairie Droz, 1975), pp. 143–50; Derek 
Ashdown Clarke, ‘The First Edition of Pacioli’s “Summa de Arithmetica” (Venice, 
Paganinus de Paganinis, 1494)’, Gutenberg Jahrbuch (1974), pp. 90-92; J. Gleeson-
White, Double Entry: How the Merchants of Venice Created Modern Finance (New 
York: W. W. Norton, 2012); Jayawardene, ‘The ‘Trattato d’abaco’ of Piero della 
Francesca’, in C. Clough, ed., Cultural aspects of the Italian Renaissance, essays in 
honour of P.O. Kristeller (Manchester, 1979); Ivo Schneider, ‘The market place and 
games of chance in the fifteenth and sixteenth centuries,’ in Mathematics from 
Manuscript to Print, ed. Cynthia Hay (New York: Oxford University Press, 1988); 
L. E. Sigler, Fibonacci’s Liber Abaci (New York: Springer, 2002); A. Ciocci, Luca 
Pacioli tra Piero della Francesca e Leonardo, (Sansepolcro: Aboca Museum, 2009); 
A. Ciocci, Luca Pacioli e la mathematizzazione del sapere nel Rinascimento (Bari: 
Cacucci, 2003); E. Giusti and C. Maccagni, eds, Luca Pacioli e la mathematica del 
Rinascimento (Florence: Giunti, 1994).
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The portrait of Pacioli by Jacopo de’ Barbari (1495; also attributed to Jacometto 
Veneziano) in the Capodimonte, Naples, Pacioli has his left hand on an open 
copy of Euclid, as ‘he demonstrates the eighth proposition from book XIII of the 
Elements of Euclid to a disciple, dressed according to the aristocratic fashion of the 
time, and identified as the duke Guidubaldo da Montefeltro, who instead turned 
his eyes towards the viewer. The friar had dedicated to the young duke the Summa 
de Arithmetica, geometry, proportions and proportionality, printed in Venice 
in 1494 and depicted in the painting right in front of the gentleman, with the 
inscription Li[ber] R[egularum] Luc[ae] Bur[gensis]’ (Il ritratto di Luca Pacioli, 
Capodimonte website). Placed on top of the Summa’s red leather binding is a 
pentagonal dodecahedron, while a large crystal rhombicuboctahedron, half filled 
with water, is suspended beside him; this polyhedron has been attributed to the 
hand of Leonardo by some scholars. Pacioli also appears in the Brera Madonna by 
Piero della Francesca, who has used his features in the depiction of Peter Martyr.



THE NATURE OF SPACE

PATRIZI, Francesco. Della Nuova Geometria Libri XV. Ferrara: Vittorio Baldini, 
1587 [but 1586].

$16,750

4to (199 x 150 mm), pp. [8], 227, [1, errata], with woodcut device on title and 
woodcut diagrams in the text. Contemporary vellum with manuscript lettering to 
spine, some wear but entirely unrestored.

First edition, very rare, of Patrizi’s important work on the concept of ‘space’, 
which is “one of the most significant and important documents for the history 
of mathematical epistemology in the Renaissance, and might indeed almost be 
considered the turning point and dividing line between ancient and modern 
geometry” (Prins, p. 56). “Patrizi’s importance in the history of science rests 
primarily on his highly original views concerning the nature of space, which have 
striking similarities to those later developed by Henry More and Isaac Newton. 
His position was first set out in De rerum naturae libri II priores, alter de spacio 
physico, alter de spacio mathematico (Ferrara, 1587) [although this was probably 
published after the Nuova geometria – see below]. Rejecting the Aristotelian 
doctrines of horror vacui and of determinate ‘place,’ Patrizi argued that the 
physical existence of a void is possible and that space is a necessary precondition 
of all that exists in it. Space, for Patrizi, was ‘merely the simple capacity (aptitudo) 
for receiving bodies, and nothing else.’ It was no longer a category, as it was 
for Aristotle, but an indeterminate receptacle of infinite extent. His distinction 
between ‘mathematical’ and ‘physical’ space points the way toward later 
philosophical and scientific theories. The primacy of space (spazio) in Patrizi’s 
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system is also seen in his Della nuova geometria (Ferrara, 1587), the essence of 
which was later incorporated into the Nova de universis philosophia. In it Patrizi 
attempted to found a system of geometry in which space was a fundamental, 
undefined concept that entered into the basic definitions (point, line, angle) 
of the system. The full impact of Patrizi’s works on later thought has yet to be 
evaluated” (DSB). “Patrizi’s works seem to have been widely known throughout 
Europe and directly influenced some of the Cambridge Platonists, notably Joseph 
Glanville and Henry More. Henry More can be seen as a link between Patrizi and 
Sir Isaac Newton. Patrizi’s long arguments for an isotropic, unchanging, immobile 
and infinite space, his vehement denunciation of the Aristotelian concept, and 
his establishment of space as a new philosophical term can finally be said to have 
taken root when Newton was able to discuss absolute space after writing: I do 
not define space as being well known to all” (John Christopher Henry, Francesco 
Patrizi and the concept of space, doctoral thesis, University of Leeds, 1977, pp. 
167-168). OCLC records eight US locations, at Chicago, Columbia, Wisconsin, 
Burndy, Michigan, Illinois, Temple, and Cornell, and a copy at the Fisher Library, 
Toronto. ABPC/RBH list just three other copies: Swann, 21 October 2014, lot 
346, $20,000; Sotheby’s, 4 November 2004 (Macclesfield, part of a sammelband), 
£6250; Sotheby’s, 11 April 2002 (de Vitry), £2585.

“Patrizi’s new geometry primarily presents a comprehensive axiomatic deductive 
system based on his own intuitive definitions of geometric concepts. As a 
religious mathematical realist, Patrizi holds that through the realization of these 
God given intuitions, or innate ideas, the mathematical structure of the universe 
can be obtained. First of all, he develops his geometric system in order to replace 
that of Euclid … Euclid’s Elements had disregarded the concepts of continuous 
quantity and infinity, proceeding from basic assumptions, axioms, and postulates 
to develop a strictly deductive geometric system. Even though Euclid’s axioms 
and postulates are faultless, Patrizi declares that the underlying philosophical 

foundation of Euclidean theory is not a suitable foundation for a science of 
geometry. He argues that although Euclid had defined all basic geometric 
concepts, including the point, line, surface and solid, he failed to formulate a 
proper philosophical system for defining all the other geometric concepts. In the 
history of thought, this was already often noted as a major logical shortcoming 
of Euclid’s geometry. There is indeed an unbridgeable gap between Euclid’s first 
seven definitions (of concepts such as point, line, and surface) in the first book of 
his Elements and the remaining definitions of the treatise. The former definitions 
concern only geometric concepts, which must be understood, in accordance with 
Aristotle, as abstractions from real things in the world. In line with this aversion 
to anything Aristotelian, Patrizi holds that such a system of definitions does 
not meet all formal logical requirements for a scientific geometry. In addition, 
he argues, as a mathematical realist against Aristotelian scholars, that the 
mathematics of the natural world is not something merely abstracted from bodies 
by the human mind, but that bodies themselves are constituted of mathematical 
space. Therefore, mathematics should precede natural philosophy.

“In his Nuova geometria Patrizi defines points, lines, angles, surfaces, and solids 
as the subject matter of the discipline of geometry. He then goes on to argue that 
every space must have a minimum, maximum and mean. At this point in his 
explanation, he comes to the conclusion that each space must be one-dimensional 
(length), two-dimensional (length and breadth), or three-dimensional (length, 
breadth and depth) … Patrizi conceives of space as the first and most important 
undefined geometric concept which is lacking in Euclid’s Elements. Points, lines, 
angles, surfaces, and solids must all be related to space as their founding concept 
… Patrizi holds that space, rather than the structure of the World-Soul, must be 
the prime subject of mathematics” (Prins, pp. 259-260). 

“Aristotle’s philosophy of mathematics, which was the widest and most elaborate 

PATRIZI, Francesco.



to be developed in the Classical Age and, what is more, the most influential for the 
following centuries, held the proper object of geometry to consist in magnitude, 
that is, in continuous quantity; in other words, it considered all the shapes and 
figures which elementary geometry studies (triangles, circles, and spheres) 
as exemplifications and instances of the common genus ‘magnitude’. Euclid’s 
Elements themselves … appeared to straightforwardly endorse the notion that 
it was just these magnitudes that formed the proper object, and the matter of 
the inquiry, of the science of geometry. The concept of (continuous) quantity, 
however, did not seem to have any connection with that of space (nor with that 
of position), and it was thus inconceivable that geometry would have to deal with 
such a concept …

“[For the Neoplatonists, however,] magnitude is not a property of substance, 
but of matter itself. This thesis liberated, in principle at least, the consideration 
of magnitudes from that of individual, determinate bodies. Thus, it carried 
mathematics beyond the status of a theory of individual shapes or figures. This 
marked the birth of the idea of a quantified environment, in which the determinate 
figures and magnitudes which geometry examines are located …

“The principal element of originality in Patrizi’s metaphysics of space consists in 
space’s ontological independence from bodies and from matter, and in the fact 
that this space is quantified and is, in effect, the foundation of the quantification 
and extension of everything which exists in it. From this, clearly, it directly follows 
that mathematics must be concerned with space itself, rather than with bodies or 
with extended corporeal matter. It is thus no surprise that Patrizi was eventually 
to arrive at the formulation of a new epistemology of geometry as the science of 
space.

“The thesis that space is directly quantified but the matter located in it only 
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indirectly so had vast implications for the general conception of science and 
nature. In particular, this leads to the idea that the world is mathematizable, and 
that it is possible to investigate its quantitative features precisely because it is in 
space. That is to say, geometry can be applied to the world because it can be applied 
to space, and space is the foundation of all bodies’ extension … We witness here, 
so to speak, a kind of ‘dress rehearsal’ of the epistemology of modern science …

“This definition of geometry as the science of space may seem obvious today, but 
in the sixteenth century it was not. Patrizi was perhaps the very first to formulate 
it. It was a definition which gained broader acceptance in the course of the 
following century, although it met with some resistance too, and was at times 
defended precisely in Patrizi’s name. It then finally won the approval not only of 
philosophers, but also of geometers, who were able to substantiate with proofs 
and theorems the new geometry which Patrizi had left, in the moment of its birth, 
largely undefended. Finally, it succeeded in imposing itself as the commonly-
accepted definition of the discipline, to such a point that it is nowadays difficult 
to imagine that geometry could be (and could have been for centuries) anything 
else than the science of space. In this sense, Patrizi gave birth to a new geometry, 
or rather laid the first epistemological and ontological foundations for such a 
geometry to be, first, fully theorized and then, eventually, actually implemented 
…

“In France, [Patrizi’s] positions gained ground principally through the writings 
of Gassendi, who certainly makes a wide use of them (though without ever 
mentioning Patrizi) in the exposition of his theory of space, so similar to Patrizi’s, 
in the Syntagma philosophicum from 1649 … on the other hand, Mersenne made 
the effort to mount a complete refutation of Patrizi’s doctrines [in his Quaestiones 
celeberrimae in Genesim, 1623]. Most of all, however, Patrizi’s metaphysics later 
gained currency in Great Britain, and Gilbert, Bacon, Fludd, Digby, and Harriot 

and Warner, were acquainted with him while Hobbes appreciated him highly; 
his good fortune, however, was chiefly due to the large numbers of English 
Neoplatonists who embraced his spatial theories enthusiastically: Herbert of 
Cherbury, Joseph Glanvill, and certainly Henry More … Newton’s mentor, 
Isaac Barrow, certainly held modern positions about space, but in geometry he 
remained a classical Neoplatonist. On the other hand, Newton himself, who had 
studied all these English authors, especially More, and then Gassendi and scores of 
other readers of Patrizi, never once doubted that geometry is performed in space. 
Already his early writings betray a mathematical epistemology clearly Patrizian 
in spirit. Newton’s extraordinary fame was certainly instrumental in the definitive 
acceptance of the geometry of space by mathematicians and philosophers.

“In the same years, moreover, Leibniz was developing a different theory of space 
and of geometry, but certainly agreed that the two needed to proceed hand in 
hand. It is not easy to ascertain the influence of Patrizi’s Nuove geometria on 
Leibniz’s attempts to develop an analysis situs. We do know that Leibniz read, 
admired – but also in certain respects scorned – Patrizi’s book; that he shared with 
him some epistemological views about mathematics; and that many geometrical 
concepts and definitions appear in almost identical forms in both works. We don’t 
know, however, when exactly Leibniz read the Nuova geometria and whether he 
was actually influenced by it in the making of his own (far superior) geometry of 
space …

“The frontispiece [of the Nuova geometria] bears the date of 1587, but we know 
from Patrizi’s correspondence with the mathematician Giambattista Benedetti 
that, as early as July 1586, he was in a position to send him the first printed 
pages, and that the whole book had appeared by early December of that year. 
It is remarkable, however, that Patrizi affirms in the treatise on geometry that 
he presupposes therein some principles which he has, so he claims, already 
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proven in his two books on space, since the latter had probably not yet appeared 
in print by the end of 1586. We may assume, therefore, that he had already 
written his metaphysical essays by the time of the composition of the  Nuova 
geometria. Conversely, in the final sentence of the two booklets De spacio physico 
& mathematico, Patrizi noted that the Italian treatise Della nuova geometria was 
intended as the continuation of the essays on space” (Prins).

Patrizi (1529-1597) studied at Ingolstadt, at the University of Padua (1547-1554), 
and at Venice. While in the service of various noblemen in Rome and Venice he 
made several trips to the East, where he perfected his knowledge of Greek, and 
to Spain. He lived for a time at Modena and at Ferrara, before being appointed 
to a personal chair of Platonic philosophy at the University of Ferrara by Duke 
Alfonso II d’Este in 1578. He remained there until 1592, when Pope Clement VIII 
summoned him to a similar professorship in Rome, a post he held until his death. 

Macclesfield 870; Poggendorff II, col. 374; Riccardi I 254 (“Bella e rara ediz. 
ommessa dal Brunet”); Sommerville p. 3; STC Italian p. 493; not in Adams. De 
Risi, ‘Francesco Patrizi and the New Geometry of Space,’ pp. 55-106 in Regier & 
Vermeir (eds.), Boundaries, Extents and Circulations, 2016. Prins, Echoes of an 
Invisible World: Marsilio Ficino and Francesco Patrizi on Cosmic Order and Music 
Theory, 2014.
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PMM 40 - AN EXCEPTIONALLY FINE 
COPY IN STRICTLY CONTEMPORARY 
BINDING

PTOLEMY. Johannes REGIOMONTANUS (Johannes MÜLLER) [and Georg 
PEURBACH]. Epytoma in Almagestum Ptolemaei. Venice: Johannes Hamman, 
31 August 1496.

$265,000

Folio (314 x 220 mm), ff 108, [including final blank], xylographic title, full-page 
woodcut of Ptolemy and Regiomontanus seated beneath an armillary sphere, within 
a fine white-on-black woodcut border, 279 woodcut diagrams (including repeats), 
6-, 7-, and 14-line white-on-black floriated and historiated woodcut initials, wood-
cut printer’s device on colophon leaf; minute marginal wormhole just touching a few 
letters from quire g to end, faint marginal dampstain to a few quires, a few early or 
contemporary corrections in ink to text along with an added manuscript diagram 
and manuscript additions to a printed diagram on f2, an extraordinarily fresh, un-
touched, unpressed, and very large copy (the largest we have been able to find meas-
urements of), with some deckle edges, in its original Italian binding comprising a 
13th-century vellum leaf, from a manuscript of Justinian’s Digest, over paper boards, 
with ties, absolutely unrestored (for further details see below).

First edition, and a beautiful, large and fresh copy in an outstanding contemporary 
Italian binding preserved in its original state, of this epochal work by the leading 
astronomer of the fifteenth century. “The importance of this book lies in the fact 
that it enshrines, within the editor’s commentary, the first appearance in print, in 
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a Latin translation from the Greek, of the monumental compendium of Claudius 
Ptolemaeus of Alexandria known as the Almagest” (PMM), the foundation of 
ancient astronomy. “The Almagest of Ptolemy (90-180 AD) had been known since 
the late 1100s only through a poor Arabic translation until Cardinal Bessarion 
charged the eminent Georgius Peuerbach with the task of properly editing the 
text. Only the first four books were completed when Peuerbach died in 1461 and 
the work was finished by his pupil Regiomontanus. This handsome volume again 
brought Greek astronomy and the accepted version of the universe before the 
Western world in Latin, a language all learned men could read. The xylographic 
portrait of Regiomontanus is considered authentic” (Dibner, Heralds, 1). “The 
Epitome of the Almagest was a new astronomical treatise. It paved the way for 
future investigations on the basis of fundamental observations and findings of 
the past, and his pointing out defects stimulated new research. Both Copernicus 
and Galileo used it as their textbook” (Zinner, Regiomontanus: his life and work, 
p. 54). The Epitome is “a model of clarity and includes everything essential to 
a working understanding of mathematical astronomy and even manages to 
clarify sections in which Ptolemy omits steps or is somewhat obscure. It has 
not been superseded even by the excellent modern commentaries on the 
Almagest, and the mathematical astronomy of the sixteenth century is in places 
unintelligible without it” (DSB, under Peurbach). “At the end of the fifteenth 
century, Ptolemy’s achievement remained at the pinnacle of astronomical 
thought; and by providing easier access to Ptolemy’s complex masterpiece, the 
Peuerbach-Regiomontanus Epitome contributed to current scientific research 
rather than to improved understanding of the past. Moreover, the Epitome was 
no mere compressed translation of the Syntaxis [i.e., the Almagest], to which it 
added later observations, revised computations, and critical reflections—one of 
which revealed that Ptolemy’s lunar theory required the apparent diameter of 
the moon to vary in length much more than it really does. This passage (book 
V, proposition 22) in the Epitome, which was printed in Venice, attracted the 

attention of Copernicus, then a student at the University of Bologna. Struck by 
this error in Ptolemy’s astronomical system, which had prevailed for over 1,300 
years, Copernicus went on to lay the foundations of modern astronomy and 
thus overthrow the Ptolemaic system” (DSB, under Regiomontanus). “In his 
writings challenging the Ptolemaic system, Copernicus ... often referred to this 
book by Peurbach and Regiomontanus. Indeed, the Epitome Almagesti did not 
just serve as the foil to Copernicus’s new theories; on the contrary, it contained 
proofs that were fundamental to his development of a heliocentric system” (Jason 
Dean, introduction to Dr Henry Zepeda’s lecture on the Epitome at Linda Hall 
Library). Regiomontanus had hoped to publish the Epitome at his own short-lived 
Nuremberg press (active 1473-1475), but his premature death at the age of 40 in 
1476 delayed its appearance for more than twenty years.

Binding: ‘an exactly contemporary Italian long–stitch binding sewn through a full 
primary cover of blue cartonnage with a secondary cover of medieval manuscript 
waste, with alum–tawed skin ties at head, tail, and fore–edges’ (thanks to Professor 
Nicholas Pickwoad, who notes that the use of the blue cartonnage ‘is less common 
– though used for the covers of some of the little long–stitch notebooks used by 
Leonardo da Vinci in the same decade (1490s’)

Provenance: 1601 inscription on front free endpaper, recording the exchange of a 
copy of ‘La Pratica’ of a Maggi or Maggio at a value of 25-somethings for this work: 
‘A di 6 Aprile 1601 Barat[t]ato cum il Gatta in Cambio li det [t]i La Pratica del 
Maggio est modo del instrumentare qual mi valeua 25’; there are various possible 
candidates for Maggi or Maggio’s ‘La Pratica’ , the most likely being Maggi and 
Castriotto’s treatise on military perspective, Della Fortificatione delle Citta, Venice 
1564. There is one early (16th century?) manuscript geometrical diagram in the 
text (in the margin of f2r).
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Born in Austria, Georg Peurbach (1423-61) matriculated for the baccalaureate at 
the University of Vienna in 1446 and received the bachelor’s degree in the Arts 
Faculty on 2 January 1448. Two years later he probably became a licentiate, and 
on 28 February 1453 he received the master’s degree and was enrolled in the Arts 
Faculty. It is unclear with whom, or indeed if, he formally studied astronomy. 
The last notable astronomer at Vienna, John of Gmunden, had died in 1442, 
prior to Peurbach’s arrival, but it is possible that he had access to astronomical 
books and instruments collected by John of Gmunden. During the period 
1448–1453, Peurbach traveled through Germany, France, and Italy, at the end of 
which he appears to have acquired an international reputation. After his return 
to Vienna, Peurbach became court astrologer to King Ladislaus V of Hungary, 
the young nephew of Emperor Frederick III. At some later time, Peurbach 
became court astrologer to the emperor himself, since Regiomontanus refers 
to him as ‘astronomus caesaris’ in the dedication of the Epitome and cites his 
service to Frederick in the lecture given at Padua. During this period, Peurbach’s 
responsibilities at the university were concerned mostly with humanistic rather 
than astronomical studies.

“Regiomontanus (1436-76) enrolled in the University of Vienna on 14 April 1450 
as ‘Johannes Molitoris de Künigsperg [Johannes Müller of Königsberg]’. Since the 
name of his birthplace means ‘King’s Mountain,’ he sometimes Latinized his name 
as ‘Joannes de Regio monte,’ from which the standard designation Regiomontanus 
was later derived. He was awarded the bachelor’s degree on 16 January 1452 at 
the age of fifteen; but because of the regulations of the university, he could not 
receive the master’s degree until he was twenty-one. On 11 November 1457 he 
was appointed to the faculty, thereby becoming a colleague of Peurbach, with 
whom he had studied astronomy. The two men became fast friends and worked 
closely together as observers of the heavens.
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“The course of their lives was deeply affected by the arrival in Vienna on 5 May 
1460 of Cardinal Bessarion (1403-72), the papal legate to the Holy Roman Empire” 
(DSB, under Regiomontanus). “His mission was to intervene in the continuing 
dispute between Frederick III and his brother Albert VI of Styria and to seek 
aid in a planned crusade against the Turks for the recapture of Constantinople. 
In Vienna he met both Peurbach and Regiomontanus. Bessarion was a figure of 
considerable importance in the transmission of Greek learning to Italy, and his 
interests were sufficiently diverse to include the exact sciences. He collected a 
large number of very fine Greek manuscripts that he later left to the city of Venice, 
where they form the core of the manuscript collection of the Biblioteca Marciana. 
One of his plans evidently involved a new translation of the Almagest from the 
Greek to replace Gerard of Cremona’s version from the Arabic and to improve 
upon the inferior translation from the Greek made by George of Trebizond 
in 1451. He also desired an abridgment of the Almagest to use as a textbook. 
Although Peurbach was unfamiliar with Greek, according to Regiomontanus he 
knew the Almagest almost by heart (quem ille quasi ad litteram memorie tenebat) 
and so took on the task of preparing the abridgment. Further plans were made for 
Peurbach and Regiomontanus to accompany Bessarion to Italy and there work 
with him, using Bessarion’s Greek manuscripts as the basis of the new translation. 
Peurbach, however, had completed only the first six books of the abridgment when 
he died, not yet thirty-eight years old. On his deathbed he made Regiomontanus 
promise to complete the work, which the latter did in Italy during the next year or 
two. This account is given by Regiomontanus in his preface to the Epitome of the 
Almagest. The completed work was dedicated to Bessarion by Regiomontanus, 
probably in 1463, in a very careful and beautifully executed copy (Venice, lat. 328, 
fols, 1–117).

“Peurbach’s early death was a serious loss to the progress of astronomy, if for 
no other reason than that the collaboration with his even more capable and 

industrious pupil Regiomontanus promised a greater quantity of valuable work 
than either could accomplish separately. Of their contemporaries, only Bianchini, 
who was considerably their senior, possessed a comparable proficiency and 
originality. The equally early death of Regiomontanus in 1476 left the technical 
development of mathematical astronomy deprived of substantial improvement 
until the generation of Tycho Brahe …

“According to Regiomontanus, Peurbach was responsible for the first six books 
of Epitoma Almagesti Ptolemaei (also known by slight variants of this title), the 
most important and most advanced Renaissance textbook on astronomy, while 
books VII-XIII were completed by Regiomontanus after Peurbach’s death. 
But this account of the division of labor and credit probably requires some 
modification. The introduction and first six propositions of book I, giving the 
general arrangement of the universe, are in part translated and in part paraphrased 
from the Greek Almagest and must be the work of Regiomontanus, possibly with 
assistance from Bessarion …

“Aside from the introductory section, books I through VI are closely based upon the 
so-called Almagesti minoris libri VI, a doubtless unfinished textbook, apparently 
of the late thirteenth century, that supplements Ptolemy with information and 
procedures drawn from al-Battānī, Thābit ibn Qurra, Jābir ibn Aflah, az-Zarqāl, 
and the Toledan Tables. The Almagestum minor divides Ptolemy’s sometimes 
lengthy chapters into individual propositions showing the proof of a geometrical 
theorem, the derivation of a parameter, or the carrying out of a procedure, and 
there are occasional digressions adding the work of post-Ptolemaic writers. The 
Epitome adopts exactly this arrangement and sometimes follows the Almagestum 
minor nearly word for word, including all of its supplements to Ptolemy. Evidently 
Peurbach based the Epitome upon the earlier work; and, with all due respect 
to Regiomontanus’ account of his teacher’s contribution, one may legitimately 
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ask to what extent the present state of the first six books is really the result of 
Regiomontanus’ revision of what Peurbach may have left as little more than a 
close paraphrase of the Almagestum minor” (DSB, under Peurbach).

“The derivation of planetary paths [in the Almagest] was very awkward, and the 
necessary mathematical formulas were held to be obsolete, ever since Geber 
had introduced the Law of Sines for easy solution of spherical triangles, back 
in the twelfth century. Faced with these defects, Peuerbach took a new tack: 
he abandoned the restoration of the tables and the lengthy derivation of paths, 
reproducing the contents of many sections in abbreviated form. In many cases, 
especially when representing the mathematical relationships between divisions 
of the heavens, he gave a series of theorems with a well-established foundation; 
in this way, he introduced his readers to the difficult field of spherical astronomy.

“His technique showed itself in the first book: he briefly restated the first six axioms 
on the place of the earth in the world, following with the theorems in individual 
sections. He had already discussed the first six sections in his derivation of the 
table of sines. The 18th section of Book I shows the application of sines, replacing 
old calculations with arcs and chords … in Book I, Section 17 he describes a 
quadrant with a scale having two sighting holes, as opposed to Ptolemy’s quadrant, 
in which a shadow was cast by rods …

“Book II (spherical astronomy) is completely altered, but in Book III, he again 
follows Ptolemy’s way. Nonetheless he does not refrain from pointing out, in the 
first section, the uncertainty of observing the time of the solstice, saying that 
it is more suitable to observe the equinoxes. In Section 14 he refers to his own 
representation of the sun’s entrance into the equinoctial points and neighboring 
signs and gives a rule for finding the beginnings of the four seasons. However the 
observations were not communicated. In the following sections he refers to al-
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Battani’s results again and again.

“Book V contains several important sections. In Section 13 he describes the 
‘Dreistab’, calling it the Regula Ptolomaei, but unfortunately he omits any statements 
about its exact arrangement; it is well known that later on, Regiomontanus made 
it into a fundamental observational instrument. The end of section 22 contains 
the crucial remark that it is wonderful that the moon does not occasionally 
appear four times its usual size, as the Ptolemaic theory requires. This reference 
to a flagrant defect in the prevailing theory must have made an impression on a 
youthful Copernicus …

“[Regiomontanus’s] reworking of Book VII is worthy of comment. In this book 
Ptolemy describes the motion of the firmament relative to the zodiac and includes 
a star catalog. Regiomontanus omits the catalog; otherwise he preserves the 
reasoning, insofar as he verified the unchangeable positions of the stars relative 
to each other through his own observations. He then reported on the motion of 
the firmament as it follows from the observations of Ptolemy and his successors, 
and refers to the uncertainty of these occasionally contradictory points of view as 
follows:

‘The inexactness of the instruments may have caused these differences; Nature may 
have assigned some unknown motion to the stars; it is now and will henceforth 
be very difficult to determine the amount of this motion due to its small size. For 
if our predecessors were deceived by their instruments, so necessarily would we, 
too, for our observations will prove nothing if we do not compare them with those 
of antiquity. But if we ascribe an unknown motion to the stars, then we must keep 
the stars firmly under observation and rid the future generations of this tradition.’

PTOLEMY. Johannes.

“This reference to the necessity of a new determination of stellar motion (the 
precession) was also significant, in view of the subsequent sections in which 
Regiomontanus gives instructions for calculating stellar coordinates, if the 
positions of two stars are known and relative distances between stars are fixed. The 
two stars’ coordinates are found from the positions of the sun and the moon by 
means of an armillary sphere, i.e., an instrument composed of several circles. At 
this point, everything necessary for a new survey of the stars and the production 
of a new star-catalog was in place. It was now only a matter of beginning with the 
observations …

“The ninth book, on the motion of Venus and Mercury, gave him occasion to 
make several comments. In Section 1 he mentioned the old assumption that the 
ratio of the apparent diameters of the sun and Venus was 10:1. Consequently, the 
sun’s disk equals one hundred of Venus’s, so that a transit of Venus could not be 
seen … The last four books, concerned with Mars, Jupiter, Saturn, and changes in 
latitude, did nor prompt him to make any comments …

“Now, on which translation of the Almagest was the Epitome based? There are two 
Latin translations from that time: Gerard of Cremona’s translation of 1175 and 
George Trebizond of Crete’s translation. The latter translated the original Greek 
text of the Almagest for Pope Nicholas V and added his own commentary. This 
version, swiftly written between March and December 1451, was so objectionable 
that the pope banned Trebizond from Rome. Regiomontanus had obtained both 
translations while in Vienna. Peuerbach had copied Cremona’s for himself: it 
was mainly this translation on which Peuerbach and Regiomontanus based their 
work” (Zinner, pp. 52-54).

“At the end of the fifteenth century, Ptolemy’s achievement remained at the 
pinnacle of astronomical thought; and by providing easier access to Ptolemy’s 



complex masterpiece, the Peuerbach-Regiomontanus Epitome contributed to 
current scientific research rather than to improved understanding of the past. 
Moreover, the Epitome was no mere compressed translation of the Syntaxis, to 
which it added later observations, revised computations, and critical reflections—
one of which revealed that Ptolemy’s lunar theory required the apparent diameter 
of the moon to vary in length much more than it really does. This passage (book 
V, proposition 22) in the Epitome, which was printed in Venice, attracted the 
attention of Copernicus, then a student at the University of Bologna. Struck by 
this error in Ptolemy’s astronomical system, which had prevailed for over 1,300 
years, Copernicus went on to lay the foundations of modern astronomy and thus 
overthrow the Ptolemaic system” (DSB, under Regiomontanus).

In a very few copies (for example two out of the thirty-four listed in Goff) there 
are two inserted leaves containing a letter from the astrologer Giovan Baptista 
Abioso. It is completely irrelevant to the text, simply comprising prognostications, 
and “appears to be a later supplement” (Horblit).

HC *13806; BMC V, 427; CIBN R-60; BSB-Ink R-67; Bod-inc R-040; IGI 5326; 
Klebs 841.1; Essling 895; Sander 6399; Stillwell Science, 103; Dibner, Heralds 1; 
Grolier/Horblit 89; Norman 1565; Schäfer/Arnim 192; PMM 40; Goff R-111.
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THE ‘AVERAGE MAN’

QUETELET, Lambert Adolphe Jacques. Sur l’Homme et le Développement de ses 
Facultés, ou Essai de Physique Sociale. Paris: Bachelier, 1835.

$14,500

Two vols., 8vo (222 x 139 mm), pp. [4], xii, 327, [1], with two folding plates; [4], viii, 
327, [1] , with four folding plates (four plates engraved, the other 2 lithographed). 
Original yellow printed wrappers, previous owner’s signature stamp to front wrap-
pers, small rectangular piece cut from the rear wrapper of vol. 2 (probably a price). 
Entirely unrestored in its original state. Some scattered relatively mild spotting (this 
work is usually found rather foxed). Very rare in such fine condition.

First edition of Quetelet’s principal work in which he presented his conception of 
the homme moyen (“average man”) as the central value about which measurements 
of a human trait are grouped according to the normal distribution (this was the 
first time the normal distribution had been used other than as an error law). 
“With Quetelet’s work of 1835 a new era in statistics began. It presented a new 
technique of statistics, or, rather, the first technique at all. The material was 
thoughtfully elaborated, arranged according to certain pre-established principles, 
and made comparable. There were not very many statistical figures in the book, 
but each figure reported made sense. For every number, Quetelet tried to find the 
determining influences, its natural causes, and the perturbations caused by man. 
The work gave a description of the average man as both a static and dynamic 
phenomenon. This work was a tremendous achievement, but Quetelet had aimed 
at a much higher goal: social physics, as the subtitle of the work said; the same 
title under which, since 1825, Comte had taught what he later called sociology. 
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Terms and analogies borrowed from mechanics played a great part in Quetelet’s 
theoretical explanation. To find the laws that govern the social body, one has 
to do what one does in physics: to observe a large number of cases and then 
take averages. Quetelet’s average man became a slogan in nineteenth-century 
discussions on social science” (DSB). “A rare, three-part review in the Athenaeum 
concluded by remarking: ‘We consider the appearance of these volumes as 
forming an epoch in the literary history of civilization’” (Stigler, p. 170). This work 
occasionally appears on the market, but we have not been able to locate any copy 
in original printed wrappers sold at auction.

“It was in writings published in the 1830s that Quetelet (1796-1874) established 
the theoretical foundations of his work in moral statistics or, to use the modern 
term, sociology. First there was the idea that social phenomena in general are 
extremely regular and that the empirical regularities can be discovered through 
the application of statistical techniques. Furthermore, these regularities have 
causes: Quetelet considered his averages to be “of the order of physical facts,” 
thus establishing the link between physical laws and social laws. But rather than 
attach a theological interpretation to these regularities—as Sussmilch and others 
had done a century earlier, finding in them evidence of a divine order—Quetelet 
attributed them to social conditions at different times and in different places. 
This conclusion had two consequences: It gave rise to a large number of ethical 
problems, casting doubt on man’s free will and thus, for example, on individual 
responsibility for crime; and in practical terms it provided a basis for arguing that 
meliorative legislation can alter social conditions so as to lower crime rates or 
rates of suicide.

“On the methodological side, two key principles were set forth very early in 
Quetelet’s work. The first states that ‘Causes are proportional to the effects produced 
by them’. This is easy to accept when it comes to man’s physical characteristics; it 

is the assumption that allows us to conclude, for example, that one man is ‘twice 
as strong’ as another (the cause) simply because we observe that he can lift an 
object that is twice as heavy (the effect). Quetelet proposed that a scientific study 
of man’s moral and intellectual qualities is possible only if this principle can be 
applied to them as well. The second key principle advanced by Quetelet is that 
large numbers are necessary in order to reach any reliable conclusions—an idea 
that can be traced to the influence of Laplace, Fourier, and Poisson …

“Quetelet was greatly concerned that the methods he adopted for studying man 
in all his aspects be as ‘scientific’ as those used in any of the physical sciences. 
His solution to this problem was to develop a methodology that would allow 
full application of the theory of probabilities. For in striking contrast to his 
contemporary Auguste Comte, Quetelet believed that the use of mathematics is 
not only the sine qua non of any exact science but the measure of its worth …

“The two memoirs which form the basis for all of Quetelet’s subsequent 
investigations of social phenomena appeared in 1831. By then he had decided 
that he wanted to isolate, from the general pool of statistical data, a special set 
dealing with human beings. He first published a memoir entitled Recherches sur 
la loi de la croissance de I’homme, which utilized a large number of measurements 
of people’s physical dimensions. A few months later he published statistics on 
crime, under the title Recherches sur le penchant au crime aux differens ages. While 
the emphasis in these publications is on what we would call the life cycle, both 
of them also include many multivariate tabulations, such as differences in the 
age-specific crime rates for men and women separately, for various countries, and 
for different social groups … In 1833 Quetelet published a third memoir giving 
developmental data on weight, Recherches sur le poids de Vhomme aux differens 
ages” (DSB).
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 “Quetelet made two important advances toward the statistical analysis of social 
data: the first of these was formulating the concept of the average man, the 
second the fitting of distributions. Quetelet’s first awakening to the variety of 
relationships latent in society may have come with his investigation of population 
data, but his interests soon spread. From 1827 to 1835 he examined scores of 
potentially meaningful relationships through the compilation of tables and 
the preparation of graphical displays… He examined birth and death rates by 
month and city, by temperature, and by time of day. He calculated the month of 
conception from the birth month and tried to relate it to marriage statistics. He 
investigated mortality by age, by profession, by locality, by season, in prisons, 
and in hospitals. He considered other human attributes: height, weight, growth 
rate, and strength. Quetelet’s interests also extended to moral qualities: statistics 
on drunkenness, insanity, suicides, and crime. In 1835 he collected a number 
of earlier memoirs and added to them to form the two-volume book that was 
to gain him an international reputation as a social scientist: Sur l’homme et le 
developpement de ses facultes ou Essai de physique sociale. It was translated into 
English in 1842 as A Treatise on Man and the Development of his Faculties.  
 
“There was no mistaking Quetelet’s aim in this book: to lay the ground-work 
for social physics, to conduct a rigorous, quantified investigation of the laws of 
society that might some day stand with astronomers’ achievements of the previous 
century. His beginning was only tentative, and he was careful (sometimes to the 
point of being apologetic) not to claim more success than he could defend; but he 
was eloquent and his zeal caught the public eye” (Stigler, pp. 169-70).

“From 1819 Quetelet lectured at the Brussels Athenaeum, military college, and 
museum. In 1823 he went to Paris to study astronomy, meteorology, and the 
management of an astronomical observatory. While there he learned probability 
from Joseph Fourier and, conceivably, from Pierre-Simon Laplace. Quetelet 
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founded (1828) and directed the Royal Observatory in Brussels, served as 
perpetual secretary of the Belgian Royal Academy (1834–74), and organized 
the first International Statistical Congress (1853). For the Dutch and Belgian 
governments, he collected and analyzed statistics on crime, mortality, and other 
subjects and devised improvements in census taking. He also developed methods 
for simultaneous observations of astronomical, meteorological, and geodetic 
phenomena from scattered points throughout Europe” (Britannica).

Kress C.4017; DSB XI: 236-8; S. M. Stigler, The History of Statistics, 1986, Chapter 
5.
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THE FIRST THEORY 
OF NEURAL NETWORKS

ROSENBLATT, Frank. The perceptron: a probabilistic model for information 
storage and organization in the brain. Offprint from Psychological Review, vol. 65, 
no. 6, November 1958, pp. 386-408. [With:] The design of an intelligent automa-
ton. Offprint from [Office of Naval Research] Research Reviews, October 1958, pp. 
5-13. [With:] Two theorems of statistical separability in the perceptron. Offprint 
(preprint?) from Proceedings of the Symposium on the Mechanization of Thought, 
National Physical Laboratory, Teddington, UK, November 1958, Vol. I, pp. 421-456. 
Together with two further offprints on the physiological basis of memory”. Wash-
ington and Teddington: American Psychological Association, Office of Naval Re-
saerch, National Physical Laboratory, 1958.

$9,500

Five offprints, 8vo. Stapled as issued in original printed wrappers. All in very fine 
condition.

First edition, very rare offprints, of the first published account of Rosenblatt’s 
invention of the ‘perceptron’, the first modern neural network; this is one of 
the most important early works on Artificial Intelligence (AI). “Rosenblatt’s 
paper (‘The perceptron: a probabilistic model for information storage and 
organization in the brain’) introduced the perceptron, the first precisely specified, 
computationally oriented neural network. (‘Neural network’ is the term used to 
describe a system deliberately constructed to employ some of the organizational 
principles believed to be used in the human brain). The perceptron had the 
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ability to recognize patters and to associate new patters with ones it had ‘seen’ 
before on the basis of similarity; like the brain, it could function in the presence 
of ‘noise’ and with damaged or missing connections. Later models were capable 
of trial-and-error learning and could be taught to emit ordered sequences of 
responses. Rosenblatt’s perceptron theory took an empiricist or ‘connectionist’ 
position with regard to the central questions of how information is stored or 
remembered, and how information contained in storage or memory influences 
recognition and behavior. Disagreeing with those theorists who saw the brain 
as simply an imperfectly designed logic machine, Rosenblatt insisted that noise 
and randomness present in the nervous system were essential to the kinds of 
computations that brains performed, and thus had to be taken into account … 
The perceptron had a major impact on several different disciplines.” (Hook & 
Norman, Origins of Cyberspace, 870). No copies of any of the offprints on OCLC 
or in auction records. These offprints were preceded only by internal Cornell 
Aeronautical Laboratory reports.

Provenance: All three perceptron offprints inscribed ‘Harry Blum // Nov 59 // The 
Hague’. Harry Blum was an AI pioneer who worked at the Air Force Cambridge 
Research Laboratories at Hanscom Air Force Base, in Bedford, Massachusetts.

“The very first mathematical model of an artificial neuron was the Threshold Logic 
Unit proposed by Warren S. McCulloch (1898–1969, American neurophysiologist) 
and Walter H. Pitts Jr. (1923–1969, American logician) in 1943 … The operating 
principle of a biological neuron can be summarized as follows. First, it takes inputs 
from its dendrites (i.e., from other neurons). In a second step, a weighted sum of 
these inputs is performed within the soma. The result is then passed on to the axon 
hillock. If this weighted sum is larger than the threshold limit, the neuron will fire. 
Otherwise, it stays at rest. The state of our neuron (on or off) then propagates 
through its axon and is passed on to the other connected neurons via its synapses...

“Based on this basic understanding of the neuron’s operating principle, McCulloch 
& Pitts proposed the very first mathematical model of an artificial neuron in their 
seminal paper A logical calculus of the ideas immanent in nervous activity back 
in 1943. Although very simple, their model has proven extremely versatile and 
easy to modify. Today, variations of their original model have now become the 
elementary building blocks of most neural networks, from the simple single layer 
perceptron all the way to the 152 layers-deep neural networks used by Microsoft 
to win the 2016 ImageNet contest.

“Almost fifteen years after McCulloch & Pitts, the American psychologist Frank 
Rosenblatt (1928–1971), inspired by the Hebbian theory of synaptic plasticity (i.e., 
the adaptation of brain neurons during the learning process), came up with the 
perceptron, a major improvement over the MCP neuron model. This invention 
granted him international recognition and, to this date, the Institute of Electrical 
and Electronics Engineers (IEEE), “the world’s largest professional association 
dedicated to advancing technological innovation and excellence for the benefit of 
humanity”, names its annual award in his honor.

“Rosenblatt’s major achievement has been to show that, by relaxing some of the 
MCP’s rules (namely the absolute inhibition, the equal contribution of all inputs 
as well as their integer nature), artificial neurons could actually learn from data. 
More importantly, he came up with a supervised learning algorithm for this 
modified MCP neuron model that enabled the artificial neuron to figure out the 
correct weights directly from training data by itself …

“Let us quickly discuss the type of problems that can be addressed by the 
perceptron. Binary (or binomial) classification is the task of classifying the 
elements of a given set into two groups (e.g. classifying whether an image depicts 
a cat or a dog) based on a prescribed rule … Rosenblatt’s perceptron can handle 
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only classification tasks for ‘linearly separable classes’ [i.e., classes which, in a 
suitable graphical representation, can be separated by a straight line, or more 
generally a hyperplane]...

“The simplicity and efficiency of this learning algorithm for linearly separable 
problems is one of the key reasons why it got so popular in the late 1950s and early 
1960s. This popularity however caused Rosenblatt to oversell his perceptron’s 
ability to learn, giving rise to unrealistic expectations in the scientific community 
and/or also reported by the media … this perceptron indeed suffers from major 
limitations greatly restricting its applicability to real-life problems. The coup de 
grâce came from Marvin Minsky (1927–2016, American cognitive scientist) and 
Seymour Papert (1928–2016, South African-born American mathematician) 
who published in 1969 the notoriously famous book Perceptrons: an introduction 
to computational geometry. In this book, the authors have shown how limited 
Rosenblatt’s perceptron (and any other single layer perceptron) actually is and, 
notably, that it is impossible for it to learn the simple logical XOR function. Some 
argue that the publication of this book and the demonstration of the perceptron’s 
limits triggered the so-called AI winter of the 1980s” (towardsdatascience.com/
rosenblatts-perceptron-the-very-first-neural-network-37a3ec09038a).

The ‘winter’ of connectionist research came to an end in the middle 1980s, when 
the work of John Hopfield, David Rumelhart and others revived large-scale interest 
in neural networks. Today, many believe Rosenblatt has been vindicated. The 
principles underlying the perceptron helped spark the modern artificial intelligence 
revolution. Deep learning and neural networks – which can classify online 
images, for example, or enable language translation – are transforming society.

Rosenblatt’s three papers on the perceptron are offered with the following works 
on the physiological basis of memory:
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ROSENBLATT, Frank, FARROW, John T. & HERBLIN, William. Transfer of 
conditioned responses from trained rats to untrained rats by means of a brain 
extract. Offprint from Nature, vol. 209, no. 5018, January 1, 1966, pp. 46-48.

ROSENBLATT, Frank, FARROW, John T. & RHINE, Sam. The transfer of learned 
behaviour from trained to untrained rats by means of brain extracts, I, II. Offprint 
from Proceedings of the National Academy of Sciences, vol. 55, nos. 3, 4, pp. 548-
555, March, pp. 787-792, April, 1966.

“Frank Rosenblatt was born in New Rochelle, New York as son of Dr Frank and 
Katherine Rosenblatt. After graduating from The Bronx High School of Science 
in 1946, he attended Cornell University, where he obtained his A.B. in 1950 and 
his Ph.D. in 1956. He then went to Cornell Aeronautical Laboratory in Buffalo, 
New York, where he was successively a research psychologist, senior psychologist, 
and head of the cognitive systems section. This is also where he conducted the 
early work on perceptrons, which culminated in the development and hardware 
construction of the Mark I Perceptron in 1960. This was essentially the first 
computer that could learn new skills by trial and error, using a type of neural 
network that simulates human thought processes. Rosenblatt’s research interests 
were exceptionally broad. In 1959 he went to Cornell’s Ithaca campus as director of 
the Cognitive Systems Research Program and also as a lecturer in the Psychology 
Department. In 1966 he joined the Section of Neurobiology and Behavior within 
the newly formed Division of Biological Sciences, as associate professor. Also in 
1966, he became fascinated with the transfer of learned behavior from trained to 
naive rats by the injection of brain extracts, a subject on which he would publish 
extensively in later years. In 1970 he became field representative for the Graduate 
Field of Neurobiology and Behavior, and in 1971 he shared the acting chairmanship 
of the Section of Neurobiology and Behavior. Frank Rosenblatt died in July 1971 
on his 43rd birthday, in a boating accident in Chesapeake Bay” (Wikipedia).
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RENAISSANCE ENCYCLOPEDIA OF 
GYNAECOLOGY

SPACH, Israel. Gynaeciorum, sive de Mulierum turn Communibus, turn Grav-
idarum, Parientium, et Puerperarum Affectibus & Morbis, Libri Graecorum, Ara-
bum, Latinorum Veterum et Recentium quotquot extant,... Strassburg: Lazarus 
Zetzner, 1597.

$4,000

Folio (330 x 212 mm), pp. [xxx], 28; 1080 [recte 1082], [34], title in red and black, 
with large woodcut printer’s device, and numerous woodcut illustrations in text; ti-
tle with light water stain to outer margin, light browning, a very nice copy of a work 
that usually suffers from heavy browning, in contemporary vellum.

First edition under Spach’s editorship, and the most complete edition of this 
celebrated collection of gynaecological writings, incorporating the best that 
had been written on the subject. “The increased interest in diseases of women 
during the Renaissance is evidenced by the appearance of what we may call 
encyclopedias of gynaecology. Conrad Gesner (1516-1565) of Zürich, a physician 
of remarkable erudition and the author of the famous Bibliotheca Universalis, 
prepared a collection of what were considered the best treatises on diseases 
of women and proposed to edit them in a single volume. Before the work was 
finished, Gesner died, but he had designated his friend and successor at the 
University of Zürich, Caspar Wolff (1532-1601), to complete the task … In 1586, 
twenty years after the publication of the first Gynaecia, a second four-volume 
edition appeared. Considerably augmented, it was the work of Caspar Bauhin 
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(1560-1624), professor of anatomy, botany, medicine and Greek at the University 
of Basle … The third and final edition of the Gynaecia appeared eleven years 
later in 1597, issued in a single volume by Israel Spach of Strassbourg” (Ricci, 
pp. 254-255). “Spach’s compilation of gynecological and obstetrical texts was 
the largest such collection of its day, reprinting most of the works collected in 
Caspar Wolff ’s Volumen gynaeciorum (1566) and Gaspard Bauhin’s Gynaeciorum 
sive de mulierum affectibus (1586-1588), and adding several other treatises. The 
collection includes works by Plater (whose anatomy of the female genitalia heads 
the collection), Moschion, Le Bon, Montanus, Paré and many others. Some of 
the anatomical woodcuts are taken from Vesalius’s Fabrica, in particular his 
‘masculinized’ representation of the female reproductive organs; also illustrated 
are various surgical and gynecological instruments, including a speculum” 
(Norman). This edition of the Gynaeciorum is the first to contain Bauhin’s Libellus 
variorum historianum (on Caesarean section) and Martin Akakia’s De morbis 
muliebribus, the latter published here for the first time; this edition is also the 
only one to contain a substantial index. This is a rather clean copy in an attractive 
contemporary binding – this book was printed on poor quality paper, and most 
copies are badly browned. 

“Spach’s massive volume of more than a thousand pages, exclusive of an elaborate 
index, contains the contributions of twenty-one different authors. Felix Platter 
(1536-1614), anatomist and physician to the Margrave of Baden, and the earliest 
systematic nosologist, contributed the first monograph. The major portion is 
devoted to the anatomy of the female genitalia, including five pictures, all taken 
from Vesalius. Two pictures present the female torso with the abdominal contents 
exposed and labelled; the second of these shows the kidneys, uterus, bladder, tubes, 
ovaries and their blood supply; the remaining pictures portray the separate genital 
organs, including the vagina. Platter rounded out his text with brief notations on 
sterility, retention of dead foetus in utero, a case of abdominal pregnancy with 

an umbilical fistula, super- foetation, fluor, ulcerations of the cervix and bladder, 
uterine prolapse, etc. He made the erroneous statement that the tubes had a wide 
communication surrounded by vessels in the center. The historian Kossmann was 
of the opinion that Platter was referring to the infundibulo-pelvic ligaments. The 
Moschion text in Greek follows — a summary of the gynaecology of Soranos. 
Wolff or Gesner added Vesalius’ picture of the uterus with the utero-ovarian 
blood supply.

“The Harmonia Gynaeciorum was contributed by Caspar Wolff. It is in the form of 
questions and answers, in which respect he imitated Moschion. Wolff ’s material 
is not original but was gathered from Theodorus Priscianus, Moschion and a 
certain Cleopatra of whom nothing is known. Galen quoted the same Cleopatra 
on cosmetics without giving his source … Eloy believed that she lived shortly 
before Christ, and a book entitled De Morbis Mulierum has been attributed to 
her. Indeed, with the exception of the chapters on the anatomy of the genitalia, 
the bulk of Wolff ’s work is second century gynaecology. Chapter II deals with 
virginity; and the author states that ‘saluberrima autem est perpetua virginitas’ 
[perpetual virginity is most wholesome]. He gives advice on how to conceal a 
spacious vaginal orifice — by the application of parsnip juice one hour before 
coition.

“To test for virginity, a fumigation of sorrel flowers and charcoal is prescribed; 
the virgin does not grow pale on breathing the fumes. Wolff attributes sterility 
to both the male and the female; and is the first to mention hypospadias as a 
possible cause. If a woman becomes dizzy after the use of a vaginal suppository of 
galbanum, she will bear children. The method of ascertaining whether the husband 
or the wife is at fault is unique: pour their respective urines in separate earthen 
vessels containing barley seeds and place the vessels in a cool place for seven days. 
The absence of sprouting allocates the fault in sterility cases. Wolff enumerates a 
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dozen vaginal suppositories which aid conception. For contraceptive purposes he 
recommends the use of nitrum in the vagina after coitus.

“Another contribution, from the surgical treatise of Albucasis, deals for the 
most part with obstetrics, save for some brief notations on the treatment for 
obstruction of the vulval orifice, either of congenital nature or resulting from 
disease. Trotula’s text on gynaecology follows, although Wolff attributed it to a 
certain Eros, physician to Julia, daughter of Caesar Augustus …

“Nicolaus Rocheus (fi. 1540), a French physician, contributed a lengthy resume 
from the works of Hippocrates, Aristotle, Pliny, Galen, Aetios, Paulus Aegineta, 
the Arabians, and from two sixteenth century physicians, Alexander Benedictus 
(1460-1525) and Leonard Fuchs (1501-1566). The text contains an introduction 
dated at Paris January 26, 1542, in which he states that the author based the treatise 
partly on his own experience; but it is entirely lacking in originality, save perhaps 
in his extensive therapy. The contribution of Luigi Bonacciuoli (d. 1540) deals 
with conception, miscarriage, delivery, the puerperium, the care of the infant and 
allied subjects. He was professor of medicine and logic at the University of Ferrara 
and dedicated his treatise to Lucrezia Borgia, the duchess of Ferrara. The contents 
of this treatise formed the basis of a series of lectures delivered at the University 
of Padua. Bonacciuoli’s text was later published under the title Enneas Muliebris, 
conjointly with De Virginitatis Notis of Severinus Pinaeus (1550-1619). There is 
not a single item of interest in the gynaecological chapters, except for his belief in 
astrological influences on female diseases.

“The commentary on menstrual disorders is by Jacobus Sylvius (Jacques Dubois) 
(1478-1555), professor of anatomy at the University of Paris. It is the only non-
obstetrical treatise in the Gynaecia. It is indeed an elaborate essay on menstruation 
with all its irregularities, ending with a few pages on leucorrhoea, prolapse, 

SPACH, Israel.



suffocation, sterility and conception. The subjects are intelligently discussed, 
and the author shows a wide range of ancient knowledge. His authorities are 
Hippocrates, Galen, Aetios and Savonarola. In keeping with ancient gynaecology, 
Sylvius advises violent coughing spells to remedy an amenorrhoea.

“Rueff ’s text deals largely with obstetrics, with a few sketchy references to the 
more common diseases affecting women. Hieronymus Mercurialis (1530-1606) 
wrote a treatise De Morbis Muliebribus (1591) — a lengthy and gossipy discussion 
consisting of four books. The first deals with sterility and uterine tumors, the 
second with abortions, the third with the puerperium, and the fourth with diseases 
of the uterus. Each entity is named and defined, the aetiology is considered, the 
symptoms are discussed, the prognosis is given and the therapy follows. For 
example, in Book IV, chapter VIII, we note De Pruritu Matricis, Causae Signa, 
Prognostica, et Curatio. It is maintained that the state of the uterus can best be 
determined both by touch and by inspection. And for this reason the vaginal 
speculum is advocated. The author was professor of medicine at Padua, Pisa and 
Bologna. He was by far a greater dermatologist than a gynaecologist, since he 
wrote the first book on diseases of the skin (De Morbis Cutaneis). He is often 
referred to as the founder of the milk theory of puerperal fever, since he was the 
first to state that the retention of milk was the cause of uterine inflammation. This 
theory was accepted by Horatius Augenius di Monte Santo (1527-1603) in his 
Epistolarum et consult ationum medicinalium libri XXIV. Mercuriale was the first 
to suggest packing the cervix with a sponge strip to dilate it. He was also the first 
to refer to the lack of fertility among the learned class.

“Giovanni Battista del Monte (Montanus) (1498-1552) begins his contribution 
with an elaborate discussion of the menses and leucorrhoea, wherein he attempts 
to differentiate leucorrhoea from gonorrhoea; and although he vaguely flirts with 
the idea of a venereal disease, he falls into the usual error. In a certain case of 

sterility he stated that the husband had gonorrhoea, but drew no conclusions. The 
treatise ends with ten brief case reports on gynaecological subjects. He lectured 
at the University of Padua, and was the teacher of the famous John Kaye, the 
Dr. Gains of the Merry Wives of Windsor. Del Monte described a case of vaginal 
rupture by a midwife, and also reported a case of destruction of the clitoris caused 
by syphilis.

“Vittore Trincavella (1496-1568) contributed three case reports (Consilia III), 
covering eight pages of the massive volume. The first deals with a woman who 
was unable to nourish her children; the second, with a patient subject to peculiar 
manifestation of the menses; and the third, with a patient troubled with white 
and pinkish discharge and severe pains. Apparently these Consilia were lectures 
delivered at the University of Padua, where Trincavella succeeded Montanus as 
professor …

“Alberto Bottoni (?-1596) wrote a lengthy dissertation on diseases of women, 
including thirty brief chapters on the physiology of menstruation, the irregularities 
of the menses and the treatment thereof. In accounting for the absence of a 
menstrual flow in man, the author stated that menstrual blood was produced only 
in women. The remaining two subjects discussed by this author were gonorrhoea 
(the flow of the seed) and uterine prolapse. Bottoni was the first physician at the 
University of Padua to institute bedside teaching. Jean Le Bon (?-1578) includes 
but one gynaecological reference in his Therapia Puer per arum — laceration of 
the perineum at delivery. A large number of drugs, mostly oils and unguents are 
prescribed, but no mention whatsoever is made of sutures.

“One of the most interesting treatises in the Gynaecia is that of the celebrated 
French surgeon, Ambroise Paré (1509-1590). It is the only monograph of the 
Spach edition with pictures of gynaecological instruments, including several 
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of the vaginal speculum. His text also includes the first picture of a submucous 
fibroid …

“Of interest is Paré’s reference to a third degree laceration and the use of sutures 
for repair. He stated that sometimes after a forcible delivery the genital parts of 
the mother were torn asunder, converting two openings into one; in which cases, 
‘We should, by means of some stitches, unite the parts unnaturally separated, 
and treat the wound according to art.’ This suggestion was accepted by his pupil, 
Guillemeau, who actually repaired a case successfully by using interrupted 
sutures. Paré recorded the fact that his wife was subject to rectal bleeding at each 
menstrual period. He described three different types of cervical growths: those 
resembling mulberry fruit he called morales; those resembling grapes, uvales, 
and those like warts, vernicales. In discussing ventral hernia he said that a cure 
could be attained by excision of the peritoneum. This must have been a dangerous 
procedure in Paré’s time.

“Paré was very ingenious in his gynaecological therapy. He was the first to use 
oval-shaped pessaries of hammered brass and pessaries made of waxed cork for 
prolapsed uterus. To keep the vaginal canal open, in order to permit free drainage, 
Paré designed a special instrument, which was also used to apply aromatic drugs 
directly to the vaginal parts for the treatment of what he called strangulation of 
the uterus. The apparatus was made of either gold, silver or brass and was kept in 
situ by means of a belt around the waist. Paré was also the first surgeon to suggest 
amputation of the cervix for malignant growths of the parts, but there is no 
definite proof that he performed the operation. He relates a case where, with the 
aid of another surgeon, an inverted uterus was cut away, and the patient survived. 
She died three months later of pleurisy and at autopsy the uterus was not found.

“Francois Rousset’s Hysterotomotokie originally appeared in French, after which 
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Bauhin translated it into Latin, and it is the Latin version which appears in the 
Gynaeciorum. Bauhin also added a supplement, entitled Appendix varies et novas 
histories continens, which includes case reports on so-called Caesarean section, 
bladder incisions, and retained dead foetus in utero (blighted ovum).

“In Bauhin’s supplement there is a brief and illuminating chapter on pessaries, 
with an illustration. These were made in different shapes – oval or round, some 
asymmetrical, and some fashioned like a heart. They were held by a cord which 
was tied to the thigh. Bauhin likewise described a pessary which his mother-in-
law, who was well versed in medical subjects, had found useful in prolapse. It 
was made from the root of a wild grape plant, fashioned like a ball, dipped into 
a solution of wax, resin and a little turpentine, and shaped to the size desired. 
Bauhin used the terni pessary in its present connotation. Prior to his time the term 
was also used to designate vaginal tampons and suppositories. A closing notation 
states that his brother, John Bauhin, while giving an anatomical demonstration, 
had observed a bicornate uterus, as is seen in dogs, in a young girl (1565).

“Mauriceus Cordaeus (fl. 1570), professor of medicine at the University of Paris 
and an able Greek scholar, translated into Latin and annotated the Greek text 
Diseases of Women. The author, a French Huguenot, got into difficulties with 
the Catholic authorities and was imprisoned. Cordaeus’ text, as it appears in the 
Gynaecia of Spach, contains both the original Greek and his Latin commentaries. 
In his commentaries we find a remarkable instance of an extra-uterine gestation. 
The patient did not conceive until she was forty years of age. At term the 
phenomenon of parturition occurred without delivery. The pains stopped, and 
she recovered. At the age of sixty-eight she became bed-ridden and died three 
years later. At autopsy a foetus was removed enclosed in a stony crust in the lower 
abdomen. Similarly, Cordaeus reported the story of the famous Lithopedion 
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of Sens. The story is mentioned by Rousset who added a picture; ‘Readers, we 
herewith include the picture of the Lithopedion or petrified embryo of the city of 
Sens. The details of the case are given in full by Cordaeus, whereas the picture is 
given here, so that we may not fall short of satisfying you.’ 

“The Gynaecia ends with the bulky contribution De Communibus Mulierum 
Affectionibus of Ludovico Mercado (1520-1606). It is by far the largest single 
treatise on diseases of women from the Hippocratic age until the publication of 
Jean Astruc’s Traite des maladies des femmes in 1761. It contains enough material 
to fill a book the size of Graves’ Gynaecology, without a single illustration. But 
despite its bulk and comprehensiveness, there is only the rare item of originality. 
He was the first to mention pregnancy and fibroids as a combined entity. Book II 
of his treatise on diseases of women, entitled ‘Maladies of Virgins and Widows,’ 
treats of uterine suffocation, uterine melancholia, uterine epilepsy, and uterine 
furor. He spoke of uteri fistulae, though in reality he was referring to vesico-
vaginal lesions (chapter XXV). He described two strange cases of vicarious 
bleeding: (a) from the canthus of the eye, (b) from the small and ring finger of an 
otherwise amenorrhoic nun. He spoke of febris alba or morbus virgineus, which 
corresponds to chlorosis. He devoted special chapters to diseases of the stomach, 
head and back due to disturbances of the uterus. He tried to identify hydrops uteri 
of the ancients with hydatid mole. Scirrhus and cancer of the uterus were due 
to disorders of menstrual blood. Among the diseases of the external genitals he 
spoke of ulcerations due to syphilis. He left the treatment of sterility caused by 
sorcerers to prayers and priests. Mercado was physician to Emperor Philip II of 
Spain and became one of the most famous practitioners of the sixteenth century” 
(Ricci, pp. 255-261).

The editor of the present work, Israel Spach (1560-1610), studied medicine at Paris 
under Jean Riolan the Elder, one of the most fervent defenders of Hippocrates 



against the attacks of the chemists of that time. After obtaining a doctorate in 
medicine at Tübingen in 1581, Spach returned to Strasbourg to practise medicine. 
In 1589 he took over the teaching of physics and Hebrew, as well as medicine, 
at the Strasbourg Academy (predecessor of the University of Strasbourg). Apart 
from the present work, Spach’s most important publication is the Nomenclator 
scriptorum philosophicorum atque philologicorum (Strasbourg, 1598). Covering 
the works of over 4,000 authors arranged under 400 subject headings, including 
esoteric subjects like gladiatorial combat, glory, and sobriety, with an emphasis 
on contemporary writers, this was the most significant subject bibliography of 
the sixteenth century.

Adams S1517; Cutter and Viets, pp. 29-30; Durling 2254; Garrison and Morton 
6013; Norman 1977; Waller 9096; Wellcome 6030. Ricci, The Genealogy of 
Gynaecology. History of the Development of Gynaecology throughout the Ages 2000 
BC – 1800 AD (2nd edition), 1950.
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INSCRIBED OFFPRINT OF 
TESLA’S FAMOUS LECTURE

TESLA, Nikola. Light and other High Frequency Phenomena. A lecture delivered 
before the National Electric Light Association at its Sixteenth Convention held at St. 
Louis, MO, February 28th, March 1st and 2d, 1893. [New York: James Kempster 
Printing Company for the National Electric Light Association, 1893].

$38,500

Large 8vo (240 x 160 mm), pp. 114, with text illustrations throughout. Original 
printed wrappers, spine with some wear, front wrapper starting to seperate, pre-
served in a clamshell box.

First edition, extremely rare offprint, inscribed by Tesla to the great American 
astronomer George Ellery Hale, of this famous lecture. “At St. Louis [Tesla] made 
the first public demonstration ever of radio communication, although Marconi is 
generally credited with having achieved this feat in 1895” (Cheney, p. 68). “What 
Tesla described in this lecture should be taken to be the foundation of radio 
engineering” (Sarkar, p. 271). By virtue of this 1893 lecture, Tesla was recognized 
by the Institute of Electrical and Electronics Engineers as discovering radio: “In 
a lecture-demonstration given in St. Louis in the same year – two years before 
Marconi’s first experiments – Tesla also predicted wireless communication; the 
apparatus that he employed contained all the elements of spark and continuous 
wave that were incorporated into radio” (Pratt, p. 1107). Tesla also anticipated 
in this lecture the 1902 discovery of the ionosphere by Heaviside and its use for 
radio propagation (Seifer, p. 105). “He was an inventor, an engineer, a scientist 

TESLA, Nikola.



and an oddball … more than any one man, Nikola Tesla is responsible for the 
twentieth century” (Hunt, introduction to Nikola Tesla: My Inventions and Other 
Writings (2011)). In his speech presenting Tesla with the Edison medal in 1917, 
B. A. Behrend, Vice President of the American Institute of Electrical Engineers, 
stated: “Were we to seize and eliminate from our industrial world the result of 
Mr. Tesla’s work, the wheels of industry would cease to turn, our electric cars and 
trains would stop, our towns would be dark and our mills would be idle and dead. 
His name marks an epoch in the advance of electrical science.” The offered work is 
a separately-paginated offprint from the Proceedings of the National Electric Light 
Association, 1893 (journal pagination 191-302). It was reprinted (in parts) in 
May-June of the same year in Electrical Engineer (New York), Electrical Engineer 
(London), Electrical Review, The Electrician, and Electricity, in July-December in 
the Journal of the Franklin Institute, and in the following year as Chapter 28 in 
The Inventions, Writings and Researches of Nikola Tesla, as well as in numerous 
later publications (in several languages). We know of no other inscribed book or 
pamphlet of Tesla’s having appeared in commerce, nor of any other copy of this 
offprint. OCLC lists copies at the American Philosophical Society, Huntington, 
Library of Congress, Linda Hall, New York Public Library, and New York 
University (no listings outside US).

Provenance: Inscribed on front wrapper ‘Compliments of the Author’ in Tesla’s hand 
to George Ellery Hale (Hale’s signature and ink stamp of the Kenwood Astrophysical 
Observatory in Chicago, of which Hale was director, also on front wrapper). Tesla 
and Hale met on at least one occasion. In a letter to Hale of June 4, 1908, Tesla 
wrote: “I have greatly regretted that since our meeting at Chicago years ago, we 
have never been able to get again together. Your work interests me very much, and 
I am heartily in sympathy with you” (hale.archives.caltech.edu/islandora/object/
hale:19006#page/1/mode/1up). It is surely probable that this meeting was on the 
occasion of the World’s Fair, held May-October 1893 in Chicago – Tesla also gave 

a demonstration of his wireless experiments at the Fair and Hale had recently been 
appointed director of the Kenwood Observatory and professor of astrophysics 
at the newly founded University of Chicago – and the date of the Exposition 
suggests that Tesla could have presented this offprint to Hale at that meeting.

“Nikola Tesla was born in Smiljan, Lika [now Croatia] in 1856 as the fourth child 
of Milutin and Djuka Tesla. His father was a well-educated priest of the Serbian 
Orthodox Church. Nikola’s mother was also intelligent and talented and he often 
said that his mother influenced his life as an inventor. His technical education was 
limited to two years polytechnic studies at Gratz, Styria [now Austria], where he 
devoted himself to mathematics, physics and mechanical engineering. From Gratz 
he went to Prague with the object of completing his scientific education and on 
philosophical studies at the University. From Prague he went to Budapest to work 
in a new telephone company. It was there that in 1882 he invented his induction 
motor and an alternating-current system of power transmission. Seeking better 
opportunities to find people who were interested in his invention, he accepted a 
position of electrical engineer for a French company in Paris, where he remained 
for two years. Another important step in his life was acceptance of the position 
of designer to build direct current dynamos and motors for the Edison Company 
in New York, where he arrived in 1884 in hope of finding the “the land of golden 
promise”. Edison was not interested in Tesla’s alternating currents system and Tesla 
soon left Edison, after a bitter struggle. In 1885, the Tesla Electric Light Company 
was formed but Tesla had to work on electric arc light. It was not until he formed 
the new Tesla Electric Company [that he was able] to realize his inventions and 
develop working models of motors, generators and transformers. During the 
years 1887 and 1888 Tesla applied and was granted more than 30 patents for 
his inventions. In 1888, the American Institute of Electrical Engineers invited 
Tesla to give a lecture on his work on the alternating-current system. After that 
lecture Tesla became famous. In 1889 George Westinghouse approached Tesla 
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and soon they completed an agreement for transferring exclusive license of Tesla’s 
polyphase current patents to the Westinghouse Company … At the beginning of 
1892, [Tesla] visited London and Paris talking about his future experiments with 
alternating currents of high potential and high frequency. He disclosed his new 
achievements in obtaining better operation of his high frequency spark generator 
by producing rapid succession of sparks, either by employment of a magnet, 
simple or multiple air gaps or by various designs of mechanical interrupters. 
Many of these inventions were later ‘reinvented’ by others without referring to 
Tesla” (Sarkar, pp. 267-269).

“But before he could get too far along with new experiments, Tesla agreed to 
lecture again, first before the Franklin Institute [in Philadelphia] on 25 February 
1893 and again the following week at the National Electric Light Association in 
St. Louis. In this lecture, Tesla followed a strategy similar to the one he employed 
in his performances in London and Paris, offering American audiences both his 
philosophical musings on the relationship between electricity and light along 
with sensational demonstrations.

“In St. Louis Tesla lectured at the Exhibition Theatre, which seated four thousand, but 
the hall was packed to suffocation as another several thousand people crowded in, 
most of whom came to see Tesla’s spectacular demonstrations. The demand for seats 
was so great that tickets were being scalped outside the hall for three to five dollars.

“Tesla did not disappoint this huge crowd. In his first demonstration he allowed 
200,000 volts to pass through his body; as he described in the published lecture: 
‘I now set the coil to work and approach the free terminal with a metallic object 
[most likely a ball] held in my hand, this simply to avoid burns. As I approach 
the metallic object to a distance of eight or ten inches, a torrent of furious sparks 
breaks forth from the end of the secondary wire, which passes through the rubber 
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columns. The sparks cease when the metal in my hand touches the wire. My arm 
is now traversed by a powerful electric current, vibrating at about the rate of one 
million times a second. All around me the electrostatic force makes itself felt, 
and the air molecules and particles of dust flying about are acted upon and are 
hammering violently against my body. So great is this agitation of particles, that 
when the lights are turned out you may see streams of feeble light appear on some 
parts of my body. When such a streamer breaks out on any part of the body, it 
produces a sensation like the pricking of a needle. Were the potentials sufficiently 
high and the frequency of vibration rather low, the skin would probably be 
ruptured under the tremendous strain, and the blood would rush out with great 
force in the form of fine spray or jet so thin as to be invisible … I can make 
these streams of light visible to all, by touching with the metallic object one of the 
terminals as before, and approaching my free hand to the brass sphere [connected 
to the coil’s other terminal] … [T]he air … is more violently agitated, and you see 
streams of light now break forth from my fingertips and from the whole hand … 
The streamers offer no particular inconvenience, except that in the ends of the 
finger tips a burning sensation is felt’ [the offered work, pp. 36-37].

“In the rest of the lecture, Tesla reviewed systematically the different means 
by which electricity could produce light using effects based on electrostatics, 
impedance, resonance, and high frequencies. Waving differently shaped tubes 
in the strong electromagnetic field created by his oscillating transformer, Tesla 
produced ‘wonderfully beautiful effects … the light of the whirled tube being 
made to look like the white spokes of a wheel of glowing moonbeams.’ Near the 
end of the performance, Tesla held up in his hand one of the phosphorescent bulbs 
and announced that he would illuminate this lamp by touching his other hand to 
his oscillating transformer. When this lamp burst into light, recalled Tesla, the 
audience was so startled that ‘there was a stampede in the two upper galleries and 
they all rushed out. They thought it was some part of the devil’s work, and ran out. 

That was the way my experiments were received’ …

“Although Tesla’s 1893 lecture covered many of the same topics as his previous 
lectures, what was new was that Tesla outlined for the first time his hopes for 
wireless transmission” (Carlson, pp. 176-178).

Tesla began his discussion of wireless transmission with a prescient prediction 
of the necessity of developing renewable energy sources. “Looking at the world 
around him, Tesla realized that it was a finite place and that the natural resources 
which gave humans the fuel to produce electricity would eventually run out. ‘What 
will man do when the forests disappear, when the coal deposits are exhausted?’ 
he asked … ‘Only one thing, according to our present knowledge, will remain: 
that is to transmit power at great distances. Man will go to the waterfalls, [and] 
to the tides’ [p. 13]. Tesla speculated that these, unlike coal and oil reserves, are 
replenishable.

“Having set up the premise that it could be possible to derive inexhaustible 
amounts of energy with properly constructed equipment, that is, ‘to attach our 
engines to the wheelwork of the universe,’ Tesla described, for the first time ever, 
his invention of wireless transmission. Cloaking his true goals in more palatable 
language, he announced, ‘I … firmly believe that it is practicable to disturb by 
means of powerful machines the electrostatic conditions of the earth and thus 
transmit intelligible signals and perhaps power.’ Taking into consideration the 
speed of electrical impulses, with this new technology, ‘all … ideas of distance 
must … vanish,’ as humans will be instantaneously interconnected. ‘First we must 
know what capacity the earth is, and what charge it contains.’ Tesla also speculated 
that the earth was ‘probably a charged body insulated in space’ and thus has a ‘low 
capacity.’ The upper strata, much like the vacuum created in his Geissler tubes, 
would probably be an excellent medium for transmitting impulses [p. 76]. We see 
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here the precursor to the discovery by Heaviside and Kennelly of the ionosphere …

“With pure resonance, Tesla suggested, wires become unnecessary since 
impulses can be ‘jumped’ from sending device to receiver. Naturally the receiving 
instruments would have to be tuned to the frequency of the transmitter. ‘If ever 
we can ascertain at what period the earth’s charge, when disturbed [or] oscillates 
with respect to an oppositely electrified system or known circuit, we shall know a 
fact possible of the greatest importance to the welfare of the human race’ [p. 76]” 
(Seifer, pp. 105-107).

Tesla’s demonstration of wireless transmission in the St. Louis lecture was described 
in 1976 by William Broughton, as told to him by his father H. P. Broughton, who 
had been Tesla’s assistant at the lecture. “On the auditorium stage a demonstration 
was set up by using two groups of equipment. In the transmitter group on one side 
of the stage was a 5-kva high-voltage pole-type oil-filled distribution transformer 
connected to a condenser bank of Leyden jars, a spark gap, a coil, and a wire 
running up to the ceiling. In the receiver group at the other side of the stage was 
an identical wire hanging from the ceiling, a duplicate condenser bank of Leyden 
jars and coil – but instead of the spark gap, there was a Geissler tube that would 
light up like a modern fluorescent lamp bulb when voltage was applied. There 
were no interconnecting wires between transmitter and receiver. The transformer 
in the transmitter group was energized from a special electric power line through 
an exposed two-blade knife switch. When this switch was closed, the transformer 
grunted and groaned, the Leyden jars showed corona sizzling around their foil 
edges, the spark gap crackled with a noisy spark discharge, and an invisible 
electromagnetic field radiated energy into space from the transmitter antenna 
wire. Simultaneously, in the receiver group, the Geissler tube lighted up from 
radio-frequency excitation picked up by the receiver antenna wire. Thus wireless 
was born. A wireless message had been transmitted by the 5-kilowatt spark 
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transmitter, and instantly received by the Geissler tube receiver thirty feet away” 
(Cheney, p. 68). Tesla’s account of this demonstration in the published lecture is 
illustrated with a diagram (Fig. 21) showing how to set up the aerials, receivers, 
transmitter, and ground connection.

“Although the St. Louis demonstration was no ‘message sent round the world’ 
as Tesla would doubtless of course have preferred it to be, he had nevertheless 
demonstrated all the fundamental principles of modern radio: 1. An antenna 
or aerial wire; 2. A ground connection; 3. An aerial-ground circuit containing 
inductance and capacity; 4. Adjustable inductance and capacity (for tuning); 5. 
Sending and receiving sets tuned to resonance with each other; and 6. Electronic 
tube detectors” (Cheney, p. 69).

Some of Tesla’s contemporaries found the idea of wireless transmission too 
speculative and worried that what they saw as his far-fetched claims might 
discourage investors in Tesla’s polyphase AC system. “In Tesla’s autobiography, 
written a quarter of a century later, the inventor informs the reader that there was 
such opposition to his discussion of wireless telegraphy at that time that ‘only a 
small part of what I had intended to say was embodied [in the lecture] … This 
little salvage from the wreck has earned me the title ‘Father of the Wireless’.’ Tesla 
stated that it was Joseph Wetzler [editor of Electrical Engineer] who told him to 
deemphasize his work in wireless in this lecture. Wetzler probably edited out a 
number of key passages which, in the long run, could have helped Tesla establish 
more easily his priorities in the field” (Seifer, p. 107).

“In developing his 1893 system, ‘using a single or no wire for electrical energy 
transmission’, Tesla was slowed down because of many other side activities, such 
as the inauguration of the polyphase system built by George Westinghouse at the 
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World Fair in Chicago, which opened to the public from May 1, 1893 till October 
30, 1893. At this fair, Tesla had his own stand showing his inventions in the area 
of low and high frequency currents … On March 13, 1895 Tesla’s laboratory in 
South Fifth Avenue [New York] was burned, and that stopped his research in the 
field of high frequency currents for some time” (Sarkar, p. 272). It was not until 
1897 that Tesla filed his first patents for wireless transmission.

“The scientist who, next to Tesla, most deserved credit for pioneering radio was 
Sir Oliver Lodge, for in 1894 he demonstrated the possibility of transmitting 
telegraph signals wirelessly by Hertzian waves a distance of 150 yards. Two years 
later, young Marchese Guglielmo Marconi arrived in London with a wireless set 
identical to Lodge’s … He [had] a ground connection and antenna or aerial wire 
with which he had made crude experiments in Bologna. As it happened, this 
equipment was exactly what Tesla had described in his widely published lecture 
in 1893, which had been translated into many languages. Later … Marconi was to 
deny that he had ever read of Tesla’s system, and the US Patent Examiner was to 
brand his denial patently absurd” (Cheney, p. 69).

“On September 2, 1897 Tesla filed the patent application No. 650,343, subsequently 
granted as patent No. 645,576 of March 20, 1900 and patent No. 649,621 of May 
15, 1900. The two patents by which Tesla protected his system and apparatus for 
wireless transmission are known as ‘system of four tuned circuits’. This fact is 
particularly important in the history of radio. They were the subject of a long 
lawsuit brought by the Marconi Wireless Telegraph Company of America against 
the United States of America, alleging that they have used wireless devices that 
infringed on Marconi patent No. 763,772 of June 28, 1904 … After 25 years, 
the United States Supreme Court on June 21, 1943 invalidated the fundamental 
American radio patent of Marconi No. 763,772 … The Supreme Court cited 
Tesla’s system in its deliberations:



“The Tesla patent No. 645,576, applied for September 2, I897 and allowed March 
20, 1900, disclosed a four circuit system, having two circuits each at transmitter and 
receiver, and recommended that all four circuits be tuned to the same frequency. 
Tesla’s apparatus was devised primarily for transmission of energy of any form of 
energy-consuming device by using the rarefied atmosphere at high elevations as 
a conductor when subjected to the electrical pressure of a very high voltage. But 
he also recognized that his apparatus could, without change, be used for wireless 
communication, which is dependent upon the transmission of electrical energy. His 
specifications declare: ‘The apparatus which I have shown will obviously have many 
other valuable uses – as, for instance, when it is desired to transmit intelligible 
messages to great distances …’” (Sarkar, pp. 274-275).

“Having become obsessed with the wireless transmission of energy, around 
1900 Nikola set to work on his boldest project yet: to build a wireless global 
communication system – to be transmitted through a large electrical tower – for 
sharing information and providing free electricity throughout the world. With 
funding from a group of investors that included financial giant J. P. Morgan, in 
1901 Tesla began work on the project in earnest, designing and building a lab 
with a power plant and a massive transmission tower on Long Island, New York, 
that became known as Wardenclyffe. However, doubts arose among his investors 
about the plausibility of Tesla’s system. As his rival, Guglielmo Marconi – with 
the financial support of Andrew Carnegie and Thomas Edison – continued to 
make great advances with his own radio technologies, Tesla had no choice but to 
abandon the project … Two years later Tesla declared bankruptcy … Poor and 
reclusive, Nikola Tesla died on January 7, 1943, at the age of 86, in New York City, 
where he had lived for nearly 60 years” (Hunt).

Tesla was the first to publish the idea of radio communication, but it was Marconi 
who successfully commercialized it and was rewarded with the Nobel Prize 
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in Physics 1909, shared with Karl Ferdinand Braun “in recognition of their 
contributions to the development of wireless telegraphy.” A persistent rumour 
is that Edison and Tesla were to be jointly awarded the 1915 Prize but that each 
refused to share it with the other and so neither received it (the 1915 Prize was 
actually awarded to the Braggs, father and son).

The recipient of this offprint, George Ellery Hale (1868-1938), was an American 
astronomer, best known for his discovery of magnetic fields in sunspots, and as 
the key figure in the planning or construction of several world-leading telescopes: 
namely, the 40-inch refracting telescope at Yerkes Observatory, the 60-inch Hale 
reflecting telescope at Mount Wilson Observatory, the 100-inch Hooker reflecting 
telescope at Mount Wilson, and the 200-inch Hale reflecting telescope at Palomar 
Observatory. In 1890, he was appointed director of the Kenwood Astrophysical 
Observatory in Chicago, founded by his father William E. Hale. He was professor 
of astrophysics at the University of Chicago (1892-1905). He also played a key 
role in developing the California Institute of Technology into a leading research 
university. He was coeditor of Astronomy and Astrophysics, 1892-95, and after 
1895 editor of the Astrophysical Journal. In October 1913, Hale received a letter 
from Albert Einstein, asking whether certain astronomical observations could be 
made that would test Einstein’s hypothesis concerning the effects of gravity on 
light. Hale replied in November, saying that such observations could be made only 
during a total eclipse of the sun. In 1919 F.W. Dyson and A.S. Eddington made 
observations during a total solar eclipse which verified Einstein’s hypothesis.

Carlson, Tesla. Inventor of the Electrical Age, 2013. Cheney, Tesla. Man Out of 
Time, 2001. Pratt, ‘Nikola Tesla 1856-1943’,Proceedings of the IRE, vol. 44 (1956), 
pp. 1106-1108. Sarkar et al, History of Wireless, 2006. Seifer, Wizard. The Life and 
Times of Nikola Tesla. Biography of a Genius, 1998.



THE FATHER OF KEPLER’S 
RUDOLPHINE TABLES

URSINUS, Benjamin. Cursus Mathematici Practici Volumen Primum [all pub-
lished]: continens Illustr. & Generosi Dn. Dn. Johannis Neperi Baronis Merchistonii 
&c. Scoti. Trigonometriam Logarithmicam. Cölln an der Spree: Martin Guthius, 
1618.

$27,500

8vo (158 x 97 mm), pp. [164], with geometric figures and tables in text (light damp-
stain in upper inner margin at the beginning of the volume). Contemporary German 
yapped vellum over boards, blue edges (soiled, extremities worn, front hinge cracked 
but firm, armorial bookplate on front paste-down, old shelf-mark pasted onto front 
free endpaper, later ownership signature on front paste-down and blind-stamp on 
front free endpaper), internally very good. A very good and genuine copy in original 
condition.

First edition, exceptionally rare, of the book that introduced logarithms to 
Continental Europe; in particular, it was through this work that Johannes Kepler, 
in ‘a happy calamity,’ as he called it, became aware of Napier’s epoch-making work, 
a discovery that enabled him to complete his great Rudolphine Tables (1627), 
“the foundation of all planetary calculations for over a century” (Sparrow). “The 
earliest publication of Napier’s logarithms on the Continent was in 1618, when 
Benjamin Ursinus included an excerpt from the canon, shortened by two places, 
in his Cursus mathematici practici. Through this work Kepler became aware of 
the importance of Napier’s discovery and expressed his enthusiasm in a letter 
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to Napier dated 28 July 1619, printed in the dedication of his Ephemerides 
(1620)” (DSB, under Napier). Ursinus assisted Kepler with the computations 
for the Rudolphine Tables, and Kepler presented and inscribed a copy to Ursinus 
(Honeyman 1800 – this copy is now held by the Adler Planetarium in Chicago); 
in the inscription, Kepler calls Ursinus and Tycho Brahe the scientific fathers of 
the tables. “The [Rudolphine] Tables was far more accurate than its predecessors 
– its margin of error staying within 10 seconds compared to up to 5 degrees with 
earlier tables. Instead of providing a sequence of planetary positions for specified 
days (which Kepler did in his Ephemerides), the Rudolphine Tables were set up to 
allow calculations of planetary positions for any time in the past or future. The 
finding of the longitude of a given planet at a given time was based on Kepler’s 
equation and he exploited logarithms for this tabulation. The precise geocentric 
positions had to be worked out from combining the heliocentric positions of the 
planets and the earth that were calculated separately. Logarithmic tabulations were 
used again to facilitate calculation” (www.sites.hps.cam.ac.uk/starry/keplertables.
html). Ursinus was for several years Kepler’s assistant: in Prague, he made 
observations with Kepler of the newly discovered satellites of Jupiter, published 
in his Narratio (1611), and later, after Kepler had moved to Linz, lived there in 
Kepler’s house for a year (1613/1614). A second issue of the Cursus Mathematici 
Practici was published in 1619 (same place and publisher). OCLC lists four copies 
(British Library, Chicago, Columbia, Göttingen); KVK adds no further copies 
outside Germany. As far as we can determine ours is the only copy of the first 
issue to have appeared in commerce; the Macclesfield copy of the second issue 
(Sotheby’s, October 26, 2005, lot 2027), in an 18th century binding, realised £9600 
($16942).

Provenance: Patrick Hume, 1st Earl of Marchmont (engraved armorial bookplate 
on front paste-down). Sir Patrick Hume (1641-1724) was a Scottish Presbyterian 
statesman and a supporter of William of Orange. He began his long political 

career in opposition during the reigns of Charles II and James VII and II. Because 
of his involvement in the 1685 anti-Catholic rebellion, Hume spent several years 
in exile in the Netherlands. He returned after the revolution of 1688 when he 
accompanied the Protestant William of Orange to Britain. His forfeited estates 
were returned to him and in 1696 he was appointed Lord Chancellor. Created 
Earl of Marchmont in 1697, he opposed the claims of the Jacobites and voted for 
Parliamentary union between Scotland and England. 

Benjamin Ursinus (originally Benjamin Behr, Latinized Ursinus), was born on 
July 15, 1587 in Sprottau in Silesia (now in Poland). Ursinus was a private tutor 
in Prague and then high school teacher at the Gymnasium of the Unity of the 
Bohemian brothers in Sobieslau and in Beuthen. From 1615 he taught at the 
Elector of Brandenburg’s Gymnasium in Joachimsthal near Berlin, a school for 
gifted boys founded in 1607. From 1630 he was mathematics professor at the 
University of Frankfurt an der Oder, where he died in 1633 or 1634.

We do not know exactly when Ursinus first came into contact with Kepler (some 
sources suggest that Ursinus was Kepler’s student), but certainly by 1610 Ursinus 
was acting as Kepler’s assistant. Following the publication of Sidereus nuncius 
(1610), Kepler, then Imperial Court Astronomer to Rudolph II, was keen to 
test Galileo’s observations. At the end of August, “the Elector of Cologne passed 
through Prague and lent Kepler the very instrument earlier sent to him by Galileo. 
Consequently, in just over one week (from August 30 to September 8), Kepler 
was able to observe what he now called for the first time the ‘satellites’ of Jupiter, 
and he was careful to do so with the testimony of various named and carefully 
described witnesses. Presumably, these were the kind of testimonials that Kepler 
had expected from Galileo. The first was Benjamin Ursinus, ‘a diligent student 
of astronomy who, from the start, because he loves this art and has decided to 
practice philosophizing in it, never dreams of ruining the credit necessary to a 
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future astronomer by false witness.’ But there was more to Ursinus’s reliability than 
concern for his future reputation. Kepler explained: ‘We adopted the following 
method: with a piece of chalk and out of sight of each other, each of us drew on a 
wall what he had been able to observe; afterward, each of us went at the same time 
to see the other’s picture to see if it was in agreement. This [method] is also to be 
understood for the following [observations]’ … From August 30 to September 5, 
Benjamin Ursinus was Kepler’s principal co-witness” (Westman, p. 480). Kepler 
acknowledged Ursinus’s assistance in the preface of his Narratio De Observatis a 
se quatuor Iouis satellitibus erronibus (1611). 

“In 1611 the political situation in Prague took an abrupt turn, ending Kepler’s 
exhilarating atmosphere of intellectual freedom. The gathering storm of the 
Counter-Reformation reached the capital, and brought about the abdication 
of Rudolph II. As warfare and bloodshed surged around him, Kepler sought 
refuge in Linz, where he was appointed provincial mathematician … The Linz 
authorities charged him first of all to ‘complete the astronomical tables in honor 
of the Emperor and the worshipful Austrian House, for the profit of … the entire 
land as well as also for his own fame and praise.’ After Rudolph’s death in 1612, 
his successor Matthias confirmed Kepler as court mathematician and agreed 
to his new residence away from Prague. But Kepler realized that as long as the 
Rudolphine Tables were unfinished, he would be tied to Linz. Thus the work on 
the tables became part of his fate” (Gingerich).

Despite Kepler’s move, Ursinus evidently remained close to him – indeed, he lived 
in Kepler’s house in Linz at Hofgasse 7 from October 1613 until autumn 1614 
(Meyer, p. 4). It was presumably during this period that Ursinus assisted Kepler 
with the computation of the tables. 

At about the same time as Ursinus left Kepler’s house in Linz, Napier’s great 
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work was published. There is evidence that the Scottish polymath John Napier 
of Merchiston (1550-1617) started working on logarithms in 1594, but his 
completed work, Mirifici logarithmorum canonis descriptio, was not published 
until 1614. “This is one of the most influential mathematical books ever published. 
It introduced the world to the concept of logarithms and their use. By simplifying 
arduous calculation, that is, by reducing multiplication and division to addition 
and subtraction, logarithms became the fundamental principle behind most 
of the methods of, and aides to, computation prior to the invention of the 
electronic computer. They also proved to be a fundamental component of many 
mathematical systems” (Tomash and Williams). The importance of Napier’s work 
was immediately recognized, but it was not until 1618, in the offered work, that 
any account of logarithms was published outside Great Britain. 

In his dedication of the Cursus Mathematici Practici, after singing the praises 
of Tycho Brahe, Kepler, and Galileo, whose telescope has made it possible for 
us to see what he and Kepler describe in their works, the author goes on to say 
that his ‘versatile friend’ Georg Vechner (1590–1647) had communicated to 
him Napier’s book, and that he had not ceased until he had made it public to his 
pupils in the Gymnasium in Joachimsthal. Although primarily a theologian and 
philosopher, the versatile Vechner published in 1613 a posthumous biography of 
Bartholomaeus Pitiscus (1561-1613), the German mathematician and astronomer 
who first coined the word trigonometry. Ursinus’s work was published at Cölln, 
the twin city of Old Berlin (Altberlin) from the 13th century to the 18th century, 
and now part of modern Berlin (and not at Cologne, as some sources would have 
it). 

The structure of Ursinus’s book is similar to that of Napier’s Descriptio, although 
it is by no means simply a translation. After giving a general description of 
the logarithmic tables, and explaining that multiplying or dividing numbers 

corresponds to adding or subtracting their logarithms, Ursinus, like Napier, goes on 
to give examples of the application of the tables to solving various trigonometrical 
problems (a few of the examples are repeats of examples given by Napier, but most 
are not). He begins with right-angled plane triangles, before treating oblique-
angled triangles in the plane, and then spherical triangles. This last case receives 
the most detailed treatment, as befits its importance to astronomical calculations. 
The text is followed by two tables. First, a Tabula Proportionalis giving the decimal 
equivalents of simple fractions, together with examples illustrating its use; and 
finally J. Neperi … Mirificus Canon Logarithmorum, Napier’s table of logarithms 
from the Descriptio, but with the number of decimal places reduced by two. (DSB 
describes Ursinus’s table as an ‘excerpt’ from that of Napier, but in fact both tables 
occupy the same 90 pages; the only difference is the number of decimal places.) 
The book concludes with several pages of errata.

Kepler became aware of the invention of logarithms a few months before the 
publication of Ursinus’s book, as we learn from a letter dated 11 March 1618 to 
his friend Wilhelm Schickard (1592-1635). “After detailing the various difficulties 
and resources of trigonometry, he stated:

‘A Scottish baron has appeared, whose name escapes me, but he has proposed 
some wonderful method by which all necessity of multiplications and divisions 
are commuted to mere additions and subtractions; nor does he make any use of a 
table of sines. However, he still requires a table of tangents and in some cases the 
variety, frequency and difficulty of additions and subtractions exceed the labour 
of multiplication and division’ [Kepler, Epistolae (1718), p. 672].

“This statement by Kepler is rather obscure since it seems to indicate that although 
he had seen a demonstration of logarithms before writing this letter to Schickard, 
Kepler had not fully understood how they were used (and therefore probably had 
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not used them himself) since ‘a table of tangents’ is not required. Nor can Kepler’s 
concluding sentence be considered an accurate assessment of logarithms.

“This was Kepler’s first impression of Napier’s work but later in the same year he 
happened to read Cursus mathematici practici volumen primum, published in 1618 
and written by his former assistant Benjamin Ursinus, in which Napier’s tables 
were reproduced for the first time on the Continent. Kepler soon recognized the 
potential of logarithms and he wrote a long letter to Napier in 1619, publishing it 
as a generous Dedication to Napier in his Ephemerides for 1620, shortly before he 
published Harmonices Mundi. Despite Kepler’s wide correspondence throughout 
Europe, it is clear that he was not aware that Napier had died two years previously” 
(Rice et al, p. 40).

“[Kepler] exploited the new logarithms to solve two problems introduced for the 
first time by the novel form of the Rudolphine Tables. The first arises in the solution 
of what is now called Kepler’s equation. For a planet moving in an ellipse, under 
Kepler’s law of areas, there is no elementary way to find explicitly the position 
angle corresponding to a given time. However, the converse is easily calculated. 
Therefore he solved his equation for a set of uniformly spaced angles, which 
determine a set of non-uniformly spaced times. Kepler tabulated the logarithms 
of these intervals as a convenient means for interpolating to the desired times. 
The second important use of logarithms arises from the thoroughly heliocentric 
nature of the book. In previous planetary tables, the motions of the sun and 
planets were combined into a single procedure. In the Rudolphine Tables we must 
find separately the heliocentric positions of the earth and planet in question. To 
find the geocentric position of the planet, these two positions must be combined 
– essentially a problem of vector addition. Kepler facilitated this maneuver 
by tabulating the logarithms of the radius vectors of earth and planet, and by 
providing a convenient double-entry table for combining them” (Gingerich).
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A second issue of the Cursus Mathematici Practici appeared in 1619, and five years 
later Ursinus published an expanded set of logarithmic-trigonometric tables to 
eight decimal places and calculated to every ten-seconds of arc (compared with 
Napier’s seven decimal places, calculated to every minute of arc).
The Ursinus is here bound with two very rare philosophical works (Ursinus 
bound first).
 
KECKERMANN, Bartholomäus. Commentarius ad systema logicum majus 
posthumous. Berlin: Martin Guthius, 1619. 8vo, pp. [iv], 304. Not on OCLC. 

Born in Danzig, Prussia, Keckermann (c. 1572-1608) was a German writer, 
Calvinist theologian, and philosopher. As a philosopher, Keckermann was 
the most prominent representative of an Aristotelian, anti-Ramist (Petrus 
Ramus) scholastic philosophy. As perhaps the most talented and independent 
Reformed theologian of orthodoxy, Keckermann with his ‘analytical method’ 
became the father of modern ‘systematic theology.’His numerous works 
were published towards the end of his short life, most of them posthumously. 
 
TIMPLER, Clemens. Opticae systema methodicum per theoremata et 
problemata selecta concinnatum et duobus libris comprehensum. Cui subjecta 
est Physiognomia humana, itidem duobus libris breviter et perspicue pertractata. 
Hanover: Petrum Antonium, 1617. 8vo, pp. [xxiv], [8], 240. 

Clemens Timpler (1563/4–1624) was a Reformed Protestant and professor of 
philosophy at the Gymnasium illustre Arnoldinum in Steinfurt (Westphalia). He 
is considered, together with Jakob Degen (1511-87), to be the most important 
Protestant metaphysician, establishing the Protestant Reformed Neuscholastik, 
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and is sometimes considered the ‘Godfather of Ontology’. His textbook on 
metaphysics, first published in 1604 and reprinted at least eight times by 1616, 
was his most influential work. 

Macclesfield 2027 (second issue, incorrectly stating that the book was published 
at Cologne); not in Tomash & Williams. Gingerich, ‘Johannes Kepler and the 
Rudolphine Tables,’ Sky and Telescope 42 (1971), pp. 328-333. Meyer, The mystery 
of Johannes Kepler’s place of residence in the Linzer Hofgasse (http://sternwarte.
at/Kepler_Linz/Kepler_Linz_Hofgasse_7_EN.pdf). Rice, González-Velasco & 
Corrigan, The Life and Works of John Napier, 2017. Westman, The Copernican 
Question, 2011. 
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THE PROOF OF 
FERMAT’S LAST THEOREM

WILES, Andrew. & Richard TAYLOR. ‘Modular elliptic curves and Fermat’s Last 
Theorem’ [with] ‘Ring-theoretic properties of certain Hecke algebras’, in: Annals 
of Mathematics, Vol. 141, No. 3, May 1995, pp. 443-551 & 553-572. Princeton: 
Princeton University Press, 1995. 

$4,500

8vo (254 x 178 mm), pp. 443-551 & pp. 553-572. Original printed wrappers, in 
virtually mint condition. Custom cloth box.

First edition, journal issue, of his proof of Fermat’s Last Theorem, which was 
perhaps the most celebrated open problem in mathematics. In a marginal 
note in the section of his copy of Diophantus’ Arithmetica (1621) dealing with 
Pythagorean triples (positive whole numbers x, y, z satisfying x2 + y2 = z2 – of 
which an infinite number exist), Fermat stated that the equation xn + yn = zn, where 
n is any whole number greater than 2, has no solution in which x, y, z are positive 
whole numbers. Fermat followed this assertion with what is probably the most 
tantalising comment in the history of mathematics: ‘I have a truly marvellous 
demonstration of this proposition which this margin is too narrow to contain.’ 
Fermat believed he could prove his theorem, but he never committed his proof 
to paper. After his death, mathematicians across Europe, from the enthusiastic 
amateur to the brilliant professional, tried to rediscover the proof of what became 
known as Fermat’s Last Theorem, but for more than 350 years none succeeded, 
nor could anyone disprove the theorem by finding numbers x, y, z which did 
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satisfy Fermat’s equation. When the great German mathematician David Hilbert 
was asked why he never attempted a proof of Fermat’s Last Theorem, he replied, 
“Before beginning I should have to put in three years of intensive study, and I 
haven’t that much time to squander on a probable failure.” Soon after the Second 
World War computers helped to prove the theorem for all values of n up to five 
hundred, then one thousand, and then ten thousand. In the 1980’s Samuel S. 
Wagstaff of the University of Illinois raised the limit to 25,000 and more recently 
mathematicians could claim that Fermat’s Last Theorem was true for all values of 
n up to four million. But no general proof was found until 1995.

“Between 1954 and 1986 a chain of events of occurred which brought Fermat’s 
Last Theorem back into the mainstream. The incident which began everything 
happened in post-war Japan, when Yutaka Taniyama and Goro Shimura, two 
young academics, decided to collaborate on the study of elliptic curves and 
modular forms. These entities are from opposite ends of the mathematical 
spectrum, and had previously been studied in isolation.

“Elliptic curves, which have been studied since the time of Diophantus, concern 
cubic equations of the form:

y2 = (x + a).(x + b).(x + c), where a, b and c can be any whole number, except zero.

The challenge is to identify and quantify the whole solutions to the equations, the 
solutions differing according to the values of a, b, and c.

“Modular forms are a much more modern mathematical entity, born in the 
nineteenth century. They are functions, not so different to functions such as sine 
and cosine, but modular forms are exceptional because they exhibit a high degree 
of symmetry. For example, the sine function is slightly symmetrical because 

2p can be added to any number, x, and yet the result of the function remains 
unchanged, i.e., sin x = sin (x + 2p). However, for modular forms the number 
x can be transformed in an infinite number of ways and yet the outcome of the 
function remains unchanged, hence they are said to be extraordinarily symmetric 
…

“Despite belonging to a completely different area of the mathematics, Shimura 
and Taniyama began to suspect that the elliptic curves might be related to 
modular forms in a fundamental way. It seemed that the solutions for any one 
of the infinite number of elliptic curves could be derived from one of the infinite 
number of modular forms. Each elliptic curve seemed to be a modular form in 
disguise. This apparent unification became known as the Shimura-Taniyama 
conjecture, reflecting the fact that mathematicians were confident that it was 
true, but as yet were unable to prove it. The conjecture was considered important 
because if it were true problems about elliptic curves, which hitherto had been 
insoluble, could potentially be solved by using techniques developed for modular 
forms, and vice versa …

“Even though the Shimura-Taniyama conjecture could not be proved, as the 
decades passed it gradually became increasingly influential, and by the 1970s 
mathematicians would begin papers by assuming the Shimura-Taniyama 
conjecture and then derive some new result. In due course many major results 
came to rely on the conjecture being proved, but these results could themselves 
only be classified as conjectures, because they were conditional on the proof of 
the Shimura-Taniyama conjecture. Despite its pivotal role, few believed it would 
be proved this century.

“Then, in 1986, Kenneth A Ribet of the University of California at Berkeley, 
building on the work of Gerhard Frey of the University of Saarlands, made an 
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astonishing breakthrough. He was unable to prove the Shimura-Taniyama 
conjecture, but he was able to link it with Fermat’s Last Theorem. The link 
occurred by contemplating the unthinkable – what would happen if Fermat’s 
Last Theorem was not true? This would mean that there existed a set of solutions 
to Fermat’s equation, and therefore this hypothetical combination of numbers 
could be used as the basis for constructing a hypothetical elliptic curve. Ribet 
demonstrated that this elliptic curve could not possibly be related to a modular 
form, and as such it would defy the Shimura-Taniyama conjecture. Running the 
argument backwards, if somebody could prove the Shimura-Taniyama conjecture 
then every elliptic curve must be related to a modular form, hence any solution 
to Fermat’s equation is forbidden to exist, and hence Fermat’s Theorem must be 
true. If somebody could prove the Shimura-Taniyama conjecture, then this would 
immediately imply the proof of Fermat’s Last Theorem. By proving one of the 
most important conjectures of the twentieth century, mathematicians could solve 
a riddle from the seventeenth century.

“The Shimura-Taniyama conjecture had remained unproven since the 1950s and 
so there was little optimism that it was a realistic route to a proof of Fermat’s Last 
Theorem. Some mathematicians joked that, if anything, the Shimura-Taniyama 
conjecture was even further out of reach, because, by definition, anything that led 
to a proof of the Last Theorem must be impossible. But for Wiles, anything that 
would lead to the Last Theorem was worth pursuing. He knew that this might be 
his only chance to realise his childhood dream and he had the audacity to attack the 
Shimura-Taniyama conjecture. As a graduate student at Cambridge University, he 
had concentrated on studying elliptic curves, and then as a professor at Princeton 
University he had continued his research, putting him in an ideal position for 
attempting a proof.

“As he embarked on his proof, Wiles made the extraordinary decision to conduct 
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his research in complete secrecy. He did not want the pressure of public attention, 
nor did he want to risk others copying his ideas and stealing the prize. In order not 
to arouse suspicion Wiles devised a cunning ploy that would throw his colleagues 
off the scent. During the early 1980s he had been working on a major piece of 
research on a particular type of elliptic curve, which he was about to publish in its 
entirety until the discoveries of Ribet and Frey made him change his mind. Wiles 
decided to publish his research bit by bit, releasing another minor paper every six 
months or so. This apparent productivity would convince his colleagues that Wiles 
was still continuing with his usual research. For as long as he could maintain this 
charade Wiles could continue working on his true obsession without revealing 
any of his breakthroughs. For the next seven years he worked in isolation, and his 
colleagues were oblivious to what he was doing. The only person who knew of his 
secret project was his wife – he told her during their honeymoon.

“The number of elliptic curves and modular forms is infinite, and the Shimura-
Taniyama conjecture claimed each elliptic curve could be matched with a 
modular. However, to succeed Wiles did not have to prove the full Shimura-
Taniyama conjecture. Instead he only had to show that a particular subset of 
elliptic curves (one which would include the hypothetical Fermat elliptic curve) 
is modular. However, this subset is still infinite in size and it includes the majority 
of interesting curves.

“To prove that something is true for an infinite number of cases required Wiles 
to pull together some of the most recent breakthroughs in number theory, and in 
addition invent new techniques of his own. He adopted a strategy loosely based 
on a method known as induction. Proof by induction can prove something for an 
infinite number of cases by invoking a domino toppling approach, i.e., to knock 
down an infinite number of dominoes, one merely has to ensure that knocking 
down any domino will always topple the next domino. In other words, Wiles had 

to develop an argument in which he could prove the first case, and then be sure 
that proving any one case would implicitly prove the next one.

“At each stage Wiles could never be sure that he could complete his proof. He 
realised that even if he did have the correct strategy, the mathematical techniques 
required might not yet exist – he might be on the right track, but living in the 
wrong century. Eventually, in 1993, Wiles felt confident that his proof was 
reaching completion. The opportunity arose to announce his proof of a major 
section of the Shimura-Taniyama conjecture, and hence Fermat’s Last Theorem, 
at a special conference to be held at the Isaac Newton Institute in Cambridge, 
England. Because this was his home town, where he had encountered the Last 
Theorem as a child, he decided to make a concerted effort to complete the proof 
in time for the conference. On June 23rd he announced his seven-year calculation 
to a stunned audience.

“His secret research programme had apparently been a success, and the 
mathematical community and the world’s press rejoiced. The front page of the New 
York Times exclaimed “At Last, Shout of ‘Eureka!’ in Age-Old Math Mystery”, and 
Wiles appeared on television stations around the world … While the media circus 
continued, the official peer review process began. Over the summer the 200-page 
proof was examined line by line by a team of referees. The manuscript was split 
into seven chapters, and each chapter was sent to a pair of expert examiners. 
Wiles checked and double-checked the proof before releasing it to the referees, 
so he was expecting little more than the mathematical equivalent of grammatical 
and typographic errors, trivial mistakes that he could fix immediately. However, 
gradually it emerged that there was a fundamental and devastating flaw in one 
stage of the argument.

“Essentially, the inductive argument used by Wiles could not guarantee that if 
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one domino toppled, then so would the next. Over the course of the next year his 
childhood dream turned into a nightmare. Each attempt to fix the error ended in 
failure, each attempt to by-pass the error ended in a dead-end. And throughout 
this period the manuscript had only been seen by the small team of referees and 
Wiles himself. There were calls from the mathematics community to publish the 
flawed proof, which would allow others to try and fix it, but Wiles steadfastly 
refused. He believed that he deserved the first chance to correct a piece of work 
that had already taken him seven years.

“After months of failure Wiles did take into his confidence Richard Taylor, a 
former student of his, hoping that this would give him someone to bounce 
ideas off, someone who could inspire him to consider alternative strategies. By 
September 1994 they were at the point of admitting defeat, ready to release the 
flawed proof so that others could try and fix it. Then on September 19th they 
made the vital breakthrough. Many years earlier, when he was working in secrecy, 
Wiles had considered using an alternative approach, but it floundered and so 
he had abandoned it. Now they realised that what was causing the more recent 
method to fail was exactly what would make the abandoned approach succeed.

Wiles recalls his reaction to the discovery: “It was so indescribably beautiful, it 
was so simple and so elegant. The first night I went back home and slept on it. 
I checked through it again the next morning and, and I went down and told me 
wife, ‘I’ve got it! I think I’ve found it!’. And it was so unexpected that she thought 
I was talking about a children’s toy or something, and she said, ‘Got what?’ I said, 
‘I’ve fixed my proof. I’ve got it’” (Simon Singh, ‘The Whole Story,’ simonsingh.net/
books/fermats-last-theorem/the-whole-story/).
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DIBNER 45 - THE BEGINNING OF 
ORGANIC CHEMISTRY

WÖHLER, Friedrich. ‘Ueber die künstliche Bildung des Harnstoffs,’ pp. 253-256 
in: Annalen der Physik und Chemie, Folge 2, Band 12. Leipzig: Johann Ambrosius 
Barth, 1828.

$2,800

8vo (199 x 122 mm), pp. viii, 632. Contemporary speckled boards, paper spine label 
lettered in manuscript (binding a little rubbed). Stamp of Carl Alexander Bibliothek 
in Eisenach. Preserved in a custom leather box. A very good copy.

First edition, complete journal volume, of this foundation work of organic 
chemistry. “In 1828, Wöhler succeeded in effecting an artificial synthesis of urea 
by heating ammonium cyanate. This was the first time that an organic substance 
had ever been built up artificially from the constituents of an inorganic substance 
without any intervention of vital processes, and it soon became clear that there 
is no essential difference between the structural chemistry of life and that of 
inanimate nature” (GM). “This was the first synthesis of an organic compound, 
and this accomplishment is generally regarded as the beginning of organic 
chemistry” (Sparrow, p. 37). “The discovery destroyed the vitalistic theory which 
held that organic compounds could be produced only by living organisms, and led 
eventually to the brilliant results that have been achieved in attempts to synthesize 
other organic compounds” (Dibner). “In 1828, Friedrich Wöhler (1800-1882) 
published a short article in which he described the unexpected formation of 
urea from ammonium cyanate. The appearance of urea as a product was entirely 
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unexpected, because theory predicted that cyanic acid and ammonia should 
produce a compound with the properties of a salt. Urea was not a salt, and it did 
not possess any of the properties expected for cyanates. In the article, Wöhler 
repeatedly noted the novelty of the artificial synthesis, but he and his mentor, 
the well-known Swedish chemist Jöns Jacob Berzelius (1779-1848), were most 
intrigued by the formation of a nonsalt from a salt, and that ammonium cyanate 
and urea had the same elemental composition. Neither Wöhler nor Berzelius 
commented, as the epigraphs might suggest, on how the synthesis influenced the 
doctrine of vitalism, but within a few decades, chemists came to regard Wöhler’s 
experiment as an ‘epochal’ discovery that would mark both the death of vitalism 
and the birth of organic chemistry as a sub-discipline of chemistry. The myth has 
proved remarkably enduring – a survey of modern organic chemistry textbooks 
has revealed that 90 per cent of them mention some version of the Wöhler myth” 
(Ramberg, p. 60).

“Wöhler, the son of an agronomist and veterinarian, attended the University of 
Marburg and then the University of Heidelberg, from which he received a medical 
degree with a specialty in obstetrics (1823). However, his passion always was 
chemistry. The eminent professor of chemistry at Heidelberg, Leopold Gmelin, 
judged Wöhler to be already too advanced to profit from his courses, so he sent 
him to study with the world-famous Swedish chemist Jöns Jacob Berzelius. A 
year of mineral analysis in Stockholm not only provided Wöhler with the best 
chemical training then available but also cemented a close lifelong bond between 
the two men. Wöhler quickly mastered the Swedish language and subsequently 
served as Berzelius’s translator and advocate in Germany” (Britannica). 

“Wöhler became acquainted with his lifelong friend Liebig as a result of what 
seemed in 1825 to be a minor squabble over the interpretation of analytical 
results but became a classic example of a new phenomenon that Berzelius in 

1830 called isomerism: both silver cyanate and silver fulminate correspond to the 
empirical formula AgCNO. Liebig had studied the explosive fulminate and at first 
rejected Wöhler’s 1824 results for the stable cyanate. In the 1820’s most chemists 
assumed that only one chemical compound corresponded to one set of analytical 
percentages. Wöhler and Liebig exchanged letters, often visited each other, and 
sometimes took vacations together from 1829 until Liebig’s death in 1873.

“Wöhler’s interest in cyanates led to a historic preparation of ‘artificial’ urea, the 
circumstances of which are best described in his letter to Berzelius of 22 February 
1828:

‘I can no longer, as it were, hold back my chemical urine; and I have to let out that I 
can make urea without needing a kidney, whether of man or dog: the ammonium 
salt of cyanic acid is urea.

‘Perhaps you can remember the experiments that I Performed in those happy 
days when I was still working with you, when I found that whenever one tried 
to combine cyanic acid with ammonia a white crystalline solid appeared that 
behaved like neither cyanic acid nor ammonia. . . . I took this up again as a subject 
that would fit into a short time interval, a small undertaking that would quickly 
be completed and – thank God – would not require a single weighing.

‘The supposed ammonium cyanate was easily obtained by reacting lead cyanate 
with ammonia solution . . . Four-sided right-angled prisms, beautifully crystalline, 
were obtained. When these were treated with acids, no cyanic acid was liberated, 
and with alkali, no trace of ammonia. But with nitric acid lustrous flakes of an 
easily crystallized compound, strongly acid in character, were formed; I was 
disposed to accept this as a new acid because when it was heated, neither nitric 
nor nitrous acid was evolved, but a great deal of ammonia. Then I found that if it 
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were saturated with alkali, the so-called ammonium cyanate reappeared; and this 
could be extracted with alcohol, Now, quite suddenly I had it! All that was needed 
was to compare urea from urine with this urea from a cyanate.’

“The letter goes on to describe how the discovery adds to the pairs of substances 
of similar composition but of different properties already known. ‘It is noticeable 
that in making cyanates (and in making ammonia) we always have to start with 
an organic substance …’

“In his published paper [offered here] Wöhler referred to his work of 1823, in 
which he had shown that cyanogen and aqueous ammonia yielded oxalic acid 
and a white crystalline solid that he now realized was urea. This, and his new 
method, he considered to be remarkable examples of the preparation ‘by art’ of a 
substance of animal origin from inorganic materials” (DSB).

“As early as the 1840s, Wöhler’s supporters began to tout his discovery as the 
‘death knell’ of vitalism—and it is still usually described that way—but recent 
historical inquiry has shown that the situation was more complex; Wöhler’s own 
antivitalist claims were necessarily muted and qualified. His discovery was at least 
as important for the history of isomerism as for vitalism, since very few cases were 
then known of two distinct compounds having identical compositions. Two years 
after Wöhler’s synthesis of urea, Berzelius defined the concept and introduced the 
new word isomerism” (Britannica).

“The urea myth can be conveniently condensed into three components: (1) that 
Wöhler synthesized urea from the elements; (2) that the synthesis unified organic 
and inorganic chemistry under the same laws; (3) that the synthesis destroyed, or 
at least weakened, the idea of a ‘vital force’ in living organisms. As historians have 
extensively documented, however, each of these three parts is highly problematic. 
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First, Wöhler’s synthesis could be, and was, rejected as artificial, because there may 
have been a residual ‘vital force’ in his starting materials [Wöhler had started with 
organic matter, derived inorganic elements from it, and used those to produce 
urea]. Second, well before the urea synthesis, chemists had operated under the 
assumption, promoted by Berzelius, that organic and inorganic chemistry should 
follow the same laws of chemical combination. Third, ‘vitalism’ was not a single 
theory but a variety of related ideas about the nature of life that continued well 
after Wöhler’s synthesis in both chemical and biological contexts …

“In most versions of the myth, vitalism is assumed to be a theory that supposes 
the existence of a mystical, nonmaterial entity that is present in living things but 
absent in inorganic systems – a ‘rational soul’ that is responsible for maintaining 
the complex systems found in living organisms … [However,] vitalism was not 
a single comprehensive theory but a variety of theories about biological systems. 
Berzelius himself had developed a version of vital materialism as early as 1806, 
which he incorporated into the section on organic chemistry in the 1827 edition 
of his textbook; he never substantially revised the entry in subsequent editions. 
Similarly, Justus von Liebig (1803-1873) described vital force in Animal Chemistry 
(1842) as ‘a peculiar property, which is possessed by certain material bodies, and 
becomes sensible when their elementary particles are combined in a certain 
arrangement or form.’ This force, analogous to gravity or electricity, arose from 
the complexity of the system. Because the synthesis of a single compound could 
have had little effect on vitalistic theories about an organized system, it should 
not be surprising that Wöhler and Berzelius failed to discuss the impact of the 
synthesis of urea on vitalism in their correspondence and that early textbooks on 
organic chemistry did not mention Wöhler or the urea synthesis …

“The Wöhler myth shows no signs of fading away, because it serves several specific 
purposes. For organic chemists, it provides a hero who accomplished a specific 

datable task that assumed great significance. The myth became widespread after 
Wöhler’s death in 1882, in part to validate the theoretical autonomy of organic 
chemistry as a discipline that no longer required concepts from either biology 
or physics, and in part because German chemists wished to place the origins of 
the powerful German chemical community, in which synthesis played a central 
role, squarely in their own country. For biologists, the myth’s simplistic image 
of vitalism provides a convenient foil for depicting how physiologists adopted 
the rigorous mechanistic and quantitative methods of chemistry and physics in 
the process of making biology more ‘scientific’ by ridding it of ‘pseudoscientific’ 
entities such as vital forces” (Ramberg, pp. 60-66).

“All that said, with respect to the insignificance claim for Wöhler’s urea, there 
is a danger in proving too much. Wöhler obviously thought that he had done 
something rather dramatic in his excited letter of 22 February 1828 to his mentor 
Berzelius, stressing that he could make urea without a kidney, or even a living 
creature. Berzelius’ reply two weeks later is just as enthusiastic and just as focused 
on the issue of organic synthesis; Wöhler had produced a ‘jewel’ for his ‘laurel-
wreath’ that would ‘immortalize’ his name. Wöhler clearly noted in his letter that 
his accomplishment would fail to convert a committed sceptic, and his published 
article did not assert that vitalism had been refuted. Moreover, both Wöhler 
and Berzelius recognized that the reaction was very relevant to a separate issue, 
the emergent study of isomerism, for Wöhler had simultaneously discovered 
that urea and ammonium cyanate had identical compositions. However, these 
qualifications do not negate the fact that both men regarded the new reaction to be 
important for an evaluation of vitalist beliefs … The ‘myth’ of Wöhler’s overthrow 
of vitalism in 1828 (and myth it surely was) was not created, as has been argued, 
in the spate of celebratory articles published during the centennial year, nor even 
in Hofmann’s 1882 obituary of Wöhler. It was created in the immediate aftermath 
of the event itself. As early as 1843, Hermann Kopp, writing as a historian, urged 
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that this was the deed that destroyed vitalist belief, and ignored the reaction’s 
relevance for isomerism; Kopp’s portrayal became an important source for later 
writers … Relevant it was; a refutation of vitalism it was not. However, by the early 
1850s, if not before, the myth of a definitive refutation had become ensconced in 
the German textbook literature” (Rocke, pp. 240-241).

Ironically, the modern understanding of the mechanism of production of urea 
in the mammalian liver seems to retain a certain ‘vitalistic’ aspect, although it 
would certainly not be described in that way today. “… the chemical synthesis 
observed by Wöhler does not represent the reaction which is employed in the 
mammalian liver for urea synthesis. The mechanism of this process was elucidated 
by the German physician Hans A. Krebs and his medical student Kurt Henseleit 
in 1932 and was shown to include the ornithine cycle. This ‘urea cycle’ is only 
observed in living cells; this apparently vitalistic phenomenon is caused by the 
compartmentalization of the various enzymatic reactions in mitochondria and 
cytosol, respectively” (Kinne-Safran & Kinne).

Dibner, Heralds of Science 45; Garrison-Morton 671; Sparrow, Milestones of Science 
197; DSB XIV, pp. 474 et seq. Kinne-Safran & Kinne, ‘Vitalism and synthesis of 
urea. From Friedrich Wohler to Hans A. Krebs,’ American Journal of Nephrology 
19 (1999), pp. 290-294. Ramberg, ‘Myth 7. That Friedrich Wöhler’s synthesis of 
urea in 1828 destroyed vitalism and gave rise to organic chemistry,’ pp. 59-66 in: 
Newton’s apple and other myths about science, Numbers & Kampourakis (eds.), 
Harvard University Press, 2015. Rocke, The quiet revolution: Hermann Kolbe and 
the science of organic chemistry, 1993.
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